Q

.
% sun

microsystems

Sun

Microsystems, Inc. + 2550 Garcia Avenue Mountain View, CA 94043 - 415-960-1300

Programmer’s Reference Manual
for SunCore

i e s o o e o e .
" N _

\.

~ .

o "~ \ -~

N

\ P

N S

S
4% sun

microsystems

e S E e

P e R R R b SEE
MERE e

Programmer’s Reference Manual
for SunCore

O -Sun Microsystems, Inc. <« 2550 Garcia Avenue -+ Mountain View, CA 94043 « 415-960-1300

Part Mo 81165401
Aovision Fol 15 May, 1985

Acknowledgements

The software in SunCore is an extended version of a merging of two software packages, namely
LEGS and CLICS. LEGS (Library of Engineering Graphices Software) was built at Sun Microsys-
tems between May 1982 and August 1982. LEGS consisted of 3-D transformations, clipping, and
region fill, plus text, line, and marker output primitives for the Sun Workstation. CLICS (C
Language Implementation of the Core System) was a 2-D implementation of the Core written by
Mike Garrett, Drew Greenholt, and others. CLICS supported dynamic segment handling, error
handling, and device independence, but lacked input primitives, 3-D capabilities, textured lines,
and device independent text. CLICS was released to the public via the UNIX User’s Group (the
precursor of USENIX) software distribution channel. CLICS plus LEGS became the SunCore
graphics package at Sun Microsystems by November 1982, bringing the package up to output
level 3C, input level 2, and dimension level 3-D, with raster extensions for polygons and bitmaps.

Copyright © 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit-
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

Revision History

Rev - Date Comments

A 15 December 1982 | First release of this Programmer’s Reference Manual.

B 1 March 1983 Many minor corrections. Added set_viewpert_3 function to view-
ing operations. Added inguire_inverse_composite_matriz function
to viewing operations. Added saving and restoring segments on
disk to segmentation and naming. Added get_mouse_state function
to input primitives. Added discussions on 3-D polygon shading
parameters.

C 15 May 1983 Many minor corrections. Made changes to SunCore routines to

bring SunCore into strict compliance with the ACM Core
specification. The following list of items is a guide: 1— Normal-
ized device coordinates are now float values in the range 0.0 to
1.0. 2— initialize_view _surface takes different arguments — sur-
face names were character strings, now they are pointers to the
device drivers for the specified view surface. 3- routines for creat-
ing and closing segments now match the Core spe%iﬁcation.
4— the set_color_indez function is replaced by the color raster
extensions set_line_sndez, sel_fillindez, and sel_tezt_indez.
5— the display list (pseudo display file) is now a virtual memory
array of 500,000 bytes, Therefore, disk space must be available for
these pages when running SunCore programs. The z-buffer is also
a virtual array, hence more disk is used.
6— set_image_transformation_type now replaces sel_segment_type.
7— Defined constants for the set_char_precision argument have
changed.

— it —

Revision History, continued

Rev

Date

Comments

1 November 1983

7 January 1984

15 May 1985

Many minor corrections. Changed viewsurface names to reflect
use of new low-level device-interface routines and window system
support. Old name sunbitmap replaced by bwidd when running
program without window system, and pezwindd for use in windows.
Old name suncolor replaced by ecgldd. Changed
initialize_view_surface — adding 2 to type argument value
suppresses clearing the screen. awatl_keyboard returns
input_string null-terminated ‘after’ the newline character instead
of before the newline character. Bitmap Frame-Buffer RasterOps
of Appendix B replaced by pixrect operations. See Sun Window
System Manual for details. Documentation for COP routines was
confusing and has been clarified. Fixed all bugs reported to date.
Also fixed some reported capability shortcomings.

Added new types of view surfaces. View-surface hames; are now
structures to support multiple windows. See appendix B for
details. Low-level device-dependent routines for the color frame-
buffer have been replaced by pixrect operations. See the Sun Win-
dow System Programmer’s Reference Manual for details of pix-
rects. SunCore now supports an interface from Pascal programs.
See appendix E for details of the Pascal interface. A higher perfor-
mance Core library is now available for use on machines with the
hardware floating-point option. See appendix F for details.

Added set_pick function. Added additional raster (STRING preci-
sion) fonts. SunCore now runs on the /dev/cgtwo display surface.
Added new appendix C — alphabetical list of C functions. Added
new appendix G — list of error messages. Various bug fixes,

— v —

Contents

Chapter 1 Introduction ... ————————————

Chapter 2 CODEIOL ... oot ssss e sss st sss s sssb e sbe s

Chapter 3 Viewing Operations and Coordinate Transforms ... R

Chapter 4 Segmentation and NamIDg ...

Chapter 5 Output PrimitiVes ... msees e

Chapter 8 AttribUbes ... ———————

Chapter 7 Input PrimibIVes ... sssssssesssres

Chapter 8 Programming Examples

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Appendix G

Deviations from ACM SIGGRAPH Core ...
SunCore View Surfaces

Alphabetical SunCore C Function Reference

Using SunCore with Fortran-77 Programs ...
Using SunCore with Pascal Programs

Higher Performance SunCore Library

SunCore Error Numbers

Contents

Chapter 1 Introduction ... 1-1
1.1. Overview and Terminology . . e 1-1
1.1.1. Basics of Drawing Picbures ... 1-3

1.2. Getting Started With SunCore ... 14
1.3. The SunCore Lint Library
1.4. The Coordinate Systems 128

1.5. Details of Using SunCore 1-7
1.5.1. Classification of Functional Capabllltles .. 1-7
| BT D35 o7 o 213 o1 i 1 T 1-8
1.5.3. Useful Constants in the usercore.h Include ¥ile .. 1-9
1.6, Further REAdIDE ... eeescensseesseerssssseees s eeseesssteest e sseessee s seeseeeen 1-11
Chapter 2 Control e eeeee e seoes e 2-1
2.1, Initialization and Termination . .. T |
2.1.1. initialize_core — Imtlahze the SunCore System _____________________ 2.9
2.1.2. terminate_core — Close Down the SunCore System . .. 2.2
2.2. Initializing and Selecting View Surfaces — 2-2
2.2.1. initialize_view_surface — Imtlallze a Vlew Surfa.ce ,,,,,,,, 2.3
2.2.2, terminate_view_sur face — Close Down a View
o150 o 2 X7 2-3
2.23. select_view_surface —— Add View Surface to Selected
T T 2-3
2.24. deselect_view_surface — Remove View Surface from
ST CE T e 2-4
2.3. Batching of Updates - e 274
2.3.1. begin_batch_ of. updates — Indlca.te Start of a Batch
OF UPABYES e s e esee s 2-4
2.3.2. end_batch_of_updates — Indicate End of a Ba.tch of
L85 B SO 2-5
2.4, Frame Control ... sssssssssss s ssoss s 2-5

2.4.1. new_frame — Start New Frame Action for Selected View

PRI D (o3 O 613115 Jo) NN 2-5
2.5.1. report_moSt_recent_error ..o 23
2.5.2. print_error ... O .

2.6. Drag Control (SunCore Extensmn) . ;|

2.6.1. S@E_AYaG .o =B

— vii —

Chapter 3 Viewing Operations and Coordinate Transforms ... 3-1
3.1. Windows, View Volumes, and ClpPIng ..o 3-1
3.2. Default Values of Viewing Operation Parameters 23
3.3. Setting 3D Viewing Operation Parameters 34

3.3.1. set_view_reference_point — Establish Reference
Point for Viewing e 3-5
3.3.2. set_view_plane_normal — Establish View Plane
NOITAl VECOTccovovevsiscsosemissssisnsassssssssssssssssssssssssssssees e 3-6
3.3.3. set_view_plane_distance — Establish View Plane
DISVBICE oo e 38
334, set_projection — Select Projection Type 38
3.3.5. set_view_up_2 — Establish 2D View Up Vector ... 37
3.36. set_view_up_3 - Establish 3D View Up Vector ... 37
3.3.7. set_ndc_space_2 — Establish Size of NDC Space 3%
3.3.8, set_ndc_space_3 — Establish Size of NDC Space ... 39
3.3.9. set_window — Establish a Window in the View Plane . .. 3-10
3.3.10. set_view_depth — Specify Planes for Depth Clipping ... 3-10
3.3.11. set_viewport_2 — Establish Limits of T'wo-
Dimensional VIeWDPOTt ... 3-10
3.3.12. set_viewport_3 — Establish Limits of Three-
Dimensional Viewport ... 311
3.3.13. set_viewing_ parameters . ..o S=11
3.4. Viewing Control . . 312
34.1. set w;mdow Cllpplng — Enable Cllpplng in the Vlew
Plane . e 312
3.4.2. set front_plane cllpplng —_ Ena.ble Depth Chpplng . 213
3.4.3. set_back_plane_clipping — Enable Depth Clipping ... 313
3.4.4. set_output_clipping (SunCore extension) ... 3-13
3.4.5. set_coordinate_system_type ..o 3-14
3.4.6. set_world_coordinate_matrix_2 — Specify World
or Modelling Transform . e 314
3.4.7. set_world_ coordlnate matrlx 3 — Spec:lfy World
or Modelling Transform - 5 ¥’
3.4.8, map_ndc_to_world_ 2 — Convert NDC to World
3.4.9. map_ndc_to_world_3 — Convert NDC to World
Coordinates | I = |
3.4.10. map_wor ld to ndc 2 — Convert World to NDC
Coordinates . - S) ¥+
3.4.11. map_world_ to ndc 3 — Convert World ’oo NDC
Coordinates . . . 315
3.5. Inquiring Viewing Cha.racterlstlcs U) §:1
3.5.1. inquire_view_re ference_po:.nt . 316
3.5.2. inquire_view_plane_normal, 316
3.5.3. inquire_view_plane_distance 31T
3.54. inquire_view_depth, S1T
3.5.5, Inquire_projection ... =17

- viii —

3.5.6. inquire_view_up_2 S 17T
3.5.7. inquire_view_up_3 . .. ST
3.5.8. inquire ndc_SPace_2 ... 318
3.5.9. inquire_ndc_SPace.3 ... 318
3.5.10. inquire_viewport_2 . . 318
3.5.11. Inquire_viewport_3, 318
3.5.12. inquire_window SO - 25 .
3.5.13. inquire_ vmwmg_parameters SOOI 2 & ! |
3.5.14. inquire_world_coordinate matrlx 2 - & [+
3.5.15. J.nqulre_wor‘ld_coordlnate_matr'lx_3 SRS - . |
3.5.16. inquire_inverse_composite_matrix (SunCore

Extension) ... R X, |
3.5.17. inquire_ v:LewJ.ng_control_parameters

Chapter 4 Segmentation and Naming 41
4.1. Retained Segment Attributes R & |
4.2. Retained Segment Operatlons I =5

4.2.1. create_retained segment — Create a New Segment I &
422, close_retained_segment — Close a Segment 43
4.2.3. delete_retained_segment — De¢lete a Retained

Segment ... - Y 5;
4.24. rename_ retalned segment — Rename a Retamed

SEEMENY . oeerrerenrsmeessns ettt 44
4.2.5. delete_all_retained_segments 4-4
4.2.6. inquire_retained_segment_surfaces 4-4
4.2.7. inquire_retained_segment_names 4-5

4.2.8. inquire_open_retained_segment 45

4.3. Temporary or Non-Retained Segments 4-5
4.3.1. create_temporary_sagment 4-6
4.3.2. close_temporary_segment 4-6
4.3.3. inquire_open_temporary_segment — Get

Temporary Segment Status ..., 4-6

4.4. Saving and Restoring Segments on Disk (SunCore Extension) 4-6

4.4.1. save_segment — Save Segment on Disk File {SunCore
EXVERSION)coorocccensnsssressesstess oo 4-6
4.4.2. restore_segment — Restore Segment from Disk File

(SunCore EXLenSION) ..o 4-7

Chapter 5 Output Primitives ... 5-1
5.1. Moving the Current Position ... 5-4
5.1.1. move_abs_2 — Move to Absolute 2D Position ... 5-4
5.1.2. move_abs_3 — Move to Absolute 3D Position 5-4

5.1.3. move_rel_2 — Move to Relative 2D Position ... 5-4

5.1.4. move_rel_3 — Move to Relative 3D Position ... 5-5

5.2, Position Enquiry Functions ..., 5-5
5.2.1. inquire_current_position_2 — Enquire 2D Position ... 5-5

—ix—

5.2.2. inquire_current_position_3 — Enquire 3D Position

5.3. Line Routines .

53.1. line_abs_2 — Descrlbe Lme in Absolute 2D Coordma,tes
5.3.2. line_abs_3 — Describe Line in Absolute 3D Coordinates
533, line_rel_2 — Describe Line in Relative 2D Coordinates
534, line_rel_3 — Describe Line in Relative 3D Coordinates

5.4. Polyline Routines ...

$4.1. polyline_abs_2 — Descrlbe Lme Sequence in Absolute
2D Coordinates

5.4.2. polyline_abs_3 — Describe Line Sequence in Absolute
3D Coordinates .

54.3. polyline_rel_2 — Descrlbe Lme Sequence in Relatwe

2D Coordinates,

54.4. polyline_rel_3 — Describe Line Sequence in Relative
3D COOTAINALES ..o e

5.5. Text Routines .

5.5.1. text — Dra.w Character Strlng 1n World Coordlna.tes
5.6. Text Enquiry Functions .

56.1. inquire_text_ extent 2

56.2. inquire_text extent_3

5.7. Marker Functions __

5.7.1. marker_abs_ 2 — Plot. Marker at Absolute 2D
COOTAINBEES ..o secomesssseessmseer st sees e eseneeseeee

5.7.2. marker_abs_3 — Plot Marker at Absolute 3D
Coordinates

5.7.5. polymarker_abs_2 — Plot Marker Sequence at Absolute
2D Coordinates |

5.7.6. polymarker_ abs 3 — Plot. Marker Sequence at Absolute

3D Coordinates .

5.7.7. polymarker_ rel 2 — Plot Ma.rker Sequence at Relatlve

2D Coordinates
5.7.8. polymarker_rel_3 — Plot Marker Sequence at Relative

BD COOTAIMALES ... e e

5.8. Three-Dimensional Polygon Shading Parameters (SunCore

DG 1103
5.8.1. set_shading_parameters ...,

5.8.2. set_light_direction — Specify Direction of Light

SOUTCE ..o ee e eseesresesseeesseeseseseessssseeses eestseeseseeseoennmesereesemeerees oo
5.8.3. set_vertexX_NOTrMALS | ..o
584, set _vertex _Anadices e

5.8.5. set_zbuffer_cut

59.1. polygon_abs_2 — Describe Polygon in Absclute 2D

CoordINates ..o

5.9.2. polygon_abs_3 — Describe Polygon in Absolute 3D

COOTAIMALES oo ess s eras st reee s

5.7.3. marker_rel_2 — Plot Marker at Relatlve 2D Coordinates
5.7.4. marker_rel_3 — Plot Marker at Relative 3D Coordinates

5.9. Polygon Functions (SunCore Extension) ...

5-5
5-5
5-5
5-6
5-6

5-6

5-7

5-7

5-8
5-8
5-8
5-8
5-9
5-9
5-9

5.9.3. polygon_rel_2 — Describe Polygon in Relative 2D

Coordinates I S 1
5.9.4. polygon_ rel _3— Descrlbe Polygon in Re!atwe 3D
Coordinates ... SSSON: & £:
5.10. Raster Przmltlve Functlons (SunCore Extensmn) S I ;|
5.10.1. put_raster — Raster Output Primitive . e 5-18
5.10.2. get_raster — Read Raster from Bla.ck/Whlte or Color
Frame Buffer ... SR 5 |

5.10.3. size_ raster — Set Slze of Ra.st.er in NDC S ;3 v ¢
5.10.4. allocate_raster — Allocate Space for a Raster . 5 ¥
5.10.5. free_raster — Free Space of a Raster . o 5-18
5.10.6. raster_to_file — Copy a Rasterto 2 Dlsk Raster Flle ,,,,,,,, 5-18
5.10.7. file_to_raster — Get a Raster from a Disk File . 5.19

Chapter 8 Attributes RSOSSN ; 5 |
6.1. Primitive Static Attributes R . 5 |

6.1.1. Using Texture for Color Att.rlbutes on the Monochrome
Display .. . T . &

6.1.2., define color :Lndlces — ASSlgn Colors to Indlces . BB
6.1.3. set_line_index — Select a Line Color Attrtbute = 87
6.1.4. set_£fill_index — Select a Polygon and Raster Color 6-7
6.1.5. set_text_index — Select a Text and Marker Color ... 68
B.1.6. set_linewidth B8

6.1.7, set lz.nestyle SOV = .
6.1.8. set_polygon_ interlor style — Select Pla.m or
Shaded Polygons ... S ; & .
6.1.9. set_polygon_ edge style (No Effect) SRPORT ¢
6.1.10. set_font .. TSSOSO =
6.1.11. set_pen — Select a Devrce Dependent. Pen SV : %.¢
B.1.12. set_CharSizZe ... 6-9
6.1.13. set_charspace — Define Character Spacing for Output
PrIMMISIVES ... 6-10
8.1.14. Set_cCharUP_2 6-10
6.1.10. St AT U 3 e 6-10
6.1.16. set_charpath_ 2 . .o 6-10
6.1.17. set_charpath_3 . ..o 6-11
6.1.18. set_charjust — Specify Text Justification (No Effect) .. 6-11
6.1.19. set_charprecision ... 6-11
6.1.20. set_marker_ _symbolo 6-11
6.1.21. set_pick_id ... e B-12
6.1.22. set rasterop — Select Ra.sterop to stplay Memory
(SunCore EXCenSION) .o, 6-12
6.1.23. set_primitive_attributes — Specify All Primitive
ABTIDUBES e e 6-12
8.2. Inquiring Primitive Static Attribute Valwes . .~ 6-13
6.2.1. inquire_color_indices 6-13

—xi—

6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.

6.2.8.
6.2.9.

6.2.10.
6.2.11,
6.2.12.
6.2.13.
6.2.14.
6.2.15.
6.2.16.
6.2.17.
6.2.18.

6.2.19.
6.2.20.
6.2.21.
6.2.22.

inquire_line_indexcoeeee————————n.
inquire_fill_index ...,
inquire _text_Index ...,
inquire_linewidth ———

inquire_linestyle _

inquire_polygon_ 1nterior style——(ﬁnam

Polygon Shading Method ..

inquire_polygon_ edge style

Inquire _charSPace
inquire_charup_2 ...
INQUIre_CharUD_3 oot sreesesiresens
e B-18
S =
inquire_charjust — Obtain Justification Attribute

inquire_charpath_2 .
inquire_charpath_3 .

inquire_rasterop — Obtain Current Rasterop

(SunCore EXCenSION) ..o essesesssmss e e
inquire_charprecision ... ——————
S

. 6-17

inquire_pick.id . .
inquire_marker symbol

inquire_primitive_ attr;butes-—Obtmn‘AH

Primitive Attributes _

6.3. Retained Segment Static Attributes

6.3.1.
6.3.2.
6.3.3.

6.4.1.
6.4.2.
6.4.3.
6.4.4.
6.4.5.
6.4.6.
6.4.7.
6.4.8.
6.4.9.

6.4.10,
8.4.11,
6.4.12.
6.4.13.
6.4.14.

6.5.1.
6.5.2.

set_image_ transformatlon type
inquire_image_transformation type

set_image_transformation_3

set_segment_visibility
set_segment_highlighting ...,
set_segment_detectability——
set_segment_image_translate_2
set_segment_image_transformation_2
set_segment_image_translate_3 e
set_segment_image_transformation_3
8.5. Inquiring Retained Segment Dynamic Attributes
inquire_visibility———————————
inquire _highlighting

— xi —

6-13
613
6-14
6-14

. 6-14

.. B-14
. B-14
ANQUIYB_PBI v eresssesssrss s seseseresseaseesssssssscrresesese
INQUIT@_FONT | s
inquire_charsSize ————

6-15
6-15
6-15
6-15
6-15
6-15

6-16

6-18
6-16

e B-17
e 617
e B-18
. . 618
inquire_segment_image_ transformatlon type"mmmm"
8.4. Setting Retained Segment Dynamic Attributes ...
SEE_VISIDILALY s et
Set_highlighting .
set_detectability —————————
set_image_translate_2 ocmom—————————
set_image_transformation_2 ...
set_image_translate_3 ...

6-18
6-18
6-19
6-19
6-20
6-20
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-23
6-23
6-24
8-24
6-24

6.9.3. inquire_detectability ... =25
6.5.4. inquire_image_translate_2 B25
6.5.5. inquire_image_transformation_2 = §.95
6.5.6. inquire_image_translate_3 6-25
6.5.7. inquire_image_transformation_3 625
6.5.8. inquire_segment_visibility ... 6-26
6.5.9. inquire_segment_highlighting 696
6.5.10. inquire_segment_detectability 6-26
6.5.11. inquire_segment_image_translate_2 _ 6-26
6.5.12. inquire_segment_image_transformation_2 6-27
6.5.13. inquire_segment_image_translate_3 .. . 827
6.5.14. inquire_segment_image_transformation_3 . . 8-27
Chapter 7 Input Primitives - 7-1
7.1. Initializing and Termlnatmg Input Devnces 7-1
7.1.1. initialize_device — Initialize a Specnﬁc Devnce 7-2
7.1.2. terminate_device — Disable a Specific Device ... 72
7.2. Device Echoing n 7-3
7.2.1. set_echo — Deﬁne Type of Echo for Devnce . . T-B
7.2.2. set_echo_group — Define Type of Echo for a Group of
Devices ... 7-6
7.2.3. set echo_posxtlon — Deﬁne Echo Reference Pomt 7-8
7.2.4. set_echo_surface — Define View Surface for Echo . . 7-8
7.3. Setting Input Device Parameters . - 7-7
7.3.1. set_locator_2 ——-Imt:ahze Loea.tor Posxt:on . 17
7.3.2. set_valuator — Initialize Value and Range for Valua.tor
Device OSSOSO o
7.3.3. set_,keyboard — Initialize Keyboard Parameters ... 77
7.3.4. set_stroke — Initialize Stroke Device 7-8
7.3.5. set_pick — Initialize Pick Device ... T8
7.4. Reading From Input Devices . SUROIONIORUTY £
7.4.1. await_any_button — Walt for Mouse Button _________________________________ 7-8
742, await_pick — Wait for Pick Device . .. 79
7.4.3. await_keyboard — Wait for Input from the Keyboard . 79
7.4.4. await_stroke_2 — Wait for User to Drawa Line . 7-10
7.4.5. await_any_button_get_locator_2 — Read Locator
When Button Clicked | - Y (8 11
7.4.6. await any_button_get valuator —_ Read Valuator
When Button Clicked " e 1-11
7.4.7. get_mouse_state — Low Level Mouse Support (SunCore
extension) .. O 45 § |
7.5. Inquiring Input Status Parameters Y £ § {
7.5.1. inquire_echo — Obtain Type of Echo for Devnce . 7-12
7.5.2. inquire_echo_position — Obtain Echo Reference
Point | ORI &3 1
7.5.3. inquire echo sur face — Obtam Vlew Surfa.ce for
LSS & 1.

— il —

7.5.4. inquire_locator_2 — Obtain Initial Locator Position ..

7.5.5. inquire_valuator — Obtain Value and Range for
Valuator Device

7.5.6. inquire keyboard — Obtaln Keyboa.rd Pa,rameters

7.5.7. inquire_stroke — Obtain Stroke Device Parameters

Chapter 8 Programming Examples,
8.1. The Sun Workstation Factory ...

8.1.1. Declarations and the Main Program

Appendix A Deviations from ACM SIGGRAPH Core
A.l. Unimplemented Functions ...
A2, Other DIffErences ...

Appendix B SunCore View Surfaces ...
B.I. The vwsurf SEIUCLUTE .. ceeeesseeeeesssseee s eeesssssesssrens

B.2. View Surface Types ..

B.3. Choosing a View Surface Type w1th1n an Apphcatlon Program
B.3.1. Using Shell Variables to Determine the Ervironment ...
B.3.2. The get_view_surface Function

B.4. Specifying a View Surface for Initialization

B.4.1. View Surface Specification for Raw Devices

B.5. Input Considerations .

B.6. Notes on Window Device View SUrfacesooowe
Appendix C Alphabetical SunCore C Function Reference
C.1. Alphabetical List of C Interfaces ...

Appendix D Using SunCore with Fortran-77 Programs ...

D.1. Programming Tips ..
D.2. Example Program ..
D.3. Correspondence Between C Names a.nd FORTRAN Na.mes

D.4. FORTRAN Interfaces to SunCore

Appendix E Using SunCore with Pascal Programs

E.l1. Programming Requirements _.
E.1.1. Routines Using View Surface Names

E.1.2. Routines Using Rasters and Colormaps

E.2. Example Program ...

E.3. Correspondence Between C Names and Pasca.l Na.mes o —
E.4. Declarations for SunCore-Pascal Interface

- Xiv —

8.1.2. The factory Drawing Function
8.1.3. The Workstation Drawing Function ...
8.1.4. The Chip Drawing Function ...
8.1.5. The Cloud Drawing Function ...

B.4.2. View Surface Specification for Window Devices ...

A-1
A-1
A-2

B-1
B-1
B-2
B-3
B-3
B-4

B-10
B-10
B-11

. B-12

B-13

C-1
C-1

D-1
D-1
D-3
D-4
D-9

E-1
E-1
E-2
E-3
E-3
E-6

E12

E.4.1. Type Declarations
. E-14

E.4.2. Function Declarations

Appendix F Higher Performance SunCore Library

Appendix G SunCore Error Numbers i,

E-12

Table 1-1
Table 1-2
Table 1-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5

Table 3-6
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6

Table 7-7
Table A-1
Table A-2

Table A-3

Table A-4
Table A-5
Table B-1

Output Capabilities ... eeeeer s 1-7
Input CapabilitIes | ... eeeees oo seeesseseseeseeee 1-8
Dimension Levels Supported, 1-8
Default Values of Viewing Operation Parameters 33
Default Values of Viewing Control Parameters ... 3.3
World Coordinate Matrix Parameters ... 3-4
Image Transformation Parameters ..., 34
Summary of Functions for Setting Viewing Control

Parameters . ..o 3-5
Summary of Functions for Inquiring Viewing Parameters 3-16
Summary of Output Primitive Functions 5-1
Useful PHONG Parameters ... 5-13
Structure of a Fill-Index Value | ... 6-4
Texture Selection Values . . . e— 6-5
Useful Texture Selection Values 6-6
Input Devices Supported By SunCore ... 7-1
Echoing for Pick Device _........ooiocomeiecomseccsesssoesomssse e 7-3
Echoing for Keyboard Device ... 7-3
Echoing for Button Device ... 7-4
Echoing for Stroke Device ... T4

6 Echoing for Locator Device ... 7-5
Echoing for Valuator Device ... O 1
Unimplemented Primitive Attrlbute Functlons __ A-l
Unimplemented Synchronous Input Functions A-1
Unimplemented Asynchronous Input Functions A-2
Unimplemented Control FUnctions ... A-2
Unimplemented Escape Functions . .. e A2

Declarations of get_view_sur face in C FORTRAN and
LY OO - .

— xvii —

Figures

Figure 3-1 Components of Viewing System .

Figure 5-1 Flow Diagram of Output Primitive Processing

— Xix —

3-2
5-4

Chapter 1

Introduction

Welcome to the SunCore graphics package and its Programmer’s Reference Manual. Sun
Microsyste'ms. offers a comprehensive package of engineering graphics software providing the
underlying support for interactive graphics applications programs. The SunCore software is an
implementation of the ACM Core graphics specification!, plus extensions. SunCore is imple-
mented to level 3C of the ACM Core specification for output primitives, and to level 2 of the ACM
Core specification for input primitives.

Extensions to the Core include textured polygon fill algorithms, raster primitives, rasterop attri-
butes, shaded surface polygon rendering, and hidden surface elimination.

This graphics package supports both the high resolution monochrome bitmap displays and the
Sun color displays. Device-dependent routines support all these displays under SunCore.

NOTE that this manual is a reference manual for the SunCore graphics package. It is not a
tutorial for the programmer without knowledge of graphics principles. It assumes that the
reader is familiar with the concepts of graphics, and has some familiarity with the ACM Core
specification. Those who are new to graphics should consult one of the publications listed in
further reading at the end of this chapter.

Where to Start

If you are an applications programmer who is familiar with the ACM Core specification, but are
new to SunCore, it is recommended that you read appendix A in order to become familiar with
the areas where SunCore deviates from and provides extensions to the ACM Core specification.

Note that SunCore supports the ACM Core output level 3C, that is, dynamic output is sup-
ported, including two and three-dimensional translation, scaling, and rotation. SunCore sup-
ports the ACM Core input level 2, that is, synchronous input, including the PICK device. Sun-
Core supports dimension level 2, that is, three-dimensional operations.

1.1. Overview and Terminology
The objective of a graphics application program is drawing pictures and text on some display

device, be it an ephemeral display device such as TV monitor or terminal, or a hard copy device
such as a plotter or printer.

1 Ag defined in Computer Graphics, the ACM SIGGRAFH Quarterly, Volume 13, #3, August 1979.

Revision F of 15 May 1985 1-1

Introduction SunCore Reference Manual

There is a need for a device-independent way of representing graphics images in the computer,
and having a collection of software routines map the device-independent representations into the
physical representations that the output device can handle, SunCore is an implementation of
one of the “standard” packages of graphics software that have appeared recently. This section
introduces some of the terminology of SunCore. This terminology is used throughout this
manual. It is somewhat easier to describe the terminology from the point of view of the physical
device working backwards to the application program, rather than starting at the software and
working out to the device.

There are two quite distinct points of view for looking at a system running a graphics applica-
tion: '

o The physical device {monitor, printer, and so on) on which the final pictures appear, and

e The internal world which the programmer uses to describe the pictures, and which {because of
SunCore) is independent of the physical device.

A view surface is a physical surface on which the final picture appears.
There are two interdependent sets of coordinate systems in use in the graphics package:

Woerld Coordinates
is a coordinate system which is device-independent. The applications programmer constructs
all graphical objects in terms of world coordinates.

Normalized Device Coordinates
(often abbreviated to NDC) is a fixed coordinate system which is independent of physical out-
put devices, World coordinates are transformed to normalized device coordinates for clip-
ping and other operations. Each physical output device driver then transforms from dormal-
ized device coordinates to the physical device coordinates for each view surface.

A viewport is a region of NDC space which the programmer selects and on which the pictures will
appear.

It is the job of the viewing transformations to perform the correct mapping between world coor-
dinates and normalized device coordinates.

A window is a region defined in world coordinates within which the images that the application
program defines appear. The selection of the coordinates for the window are arbitrary — the
graphics package maps the window into the viewport.

In two dimensions, the transformation from the window to the viewport is a relatively straight-
forward process. In three dimensions, another level of complexity is introduced with the notion
of a view plane which is positioned arbitrarily in world coordinates.

An output primitive, or often just a primitive, is a part of a picture (such as a line or a character
string). The appearance of primitives (such as solid or dotted lines) is determined by primstive
attributes. A primitive attribute is a general characteristic of an output primitive, and affects the
appearance of that primitive. Examples of primitive attributes are color, linestyle, and
linewidth.

Each output primitive may be assigned a name, called the pick-id, which is used to identify that
primitive when an input operation (such as pointing at the primitive with the mouse) is applied.

The Current Position is a SunCore system value that defines the current location for drawing.
At startup time, the Current Position is set to the origin of the world coordinate system. Func-
tions that create output primitives (move, line, and so on) can alter the Current Position.

1-2 Revision F of 15 May 1985

SunCore Reference Manual Introduction

Output primitives are collected together in segments. A segment defines an smage which is a
part of the picture on a view surface.

Segments are divided into two classes, namely: temporary and retained. A retained segment has
a name, and can have segment attributes associated with it. A temporary segment is nameless,
and furthermore, the image that a temporary segment defines only remains visible as long as
information is only being added to the view surface. As soon as a new frame action {one which
repaints view surface) occurs, the temporary segment’s image disappears from the view surface.

Each retained segment has one static attribute, its image transformation type. The value of this
attribute can be none, translatable, or transformable, Translatable and transformable retained
segments can be translated or transformed in either two or three dimensions.

Segments also have dynamic attributes. The vissbslity and highlighting attributes control the
appearance of the image. The detectability attribute determines if the segment can be detected
by the pick device. Dynamic attributes for translatable and transformable segments include the
segment’s image transformation. Depending on the image transformation type, the image
transformation may contain translation, rotation, and scaling components.

A viewing operation is an operation that maps positions in world coordinates to positions in nor-
malized device coordinates. The viewing operation also determines the portion of the world
coordinate space that is visible if window clipping or depth clipping is enabled.

The applications program can obtain user interaction by means of énput primitives, which pro-
vide facilities for pointing at objects, entering data from the keyboard, and causing events.

1.1.1. Basies of Drawing Piclures

The general sequence of actions that an application program goes through to create a picture on
a device is this:

Instialize SunCore.

Instsalize a view surface upon which the picture will be drawn.

Select a view surface upon which the picture will be drawn.

oW o

Specify the viewing operation parameters {sizes of windows in world coordinates, size of
viewport, and so on).

on

Set an image transformation type.

6. Create a segment. The created segment becomes the currently open segment until it is
closed.

7. Set attributes for the segment, if required.
8. Draw objects in the segment using output primitives.
9. Close the segment.

10. Repeat steps 4 through 9 as often as required, for as many segments as needed to build the
picture.

11. Apply image tranaformations (translation, scaling, and rotation) to a given segment, to
achieve the required picture on the display device.

12. Deselect the view surface.

Revision F of 15 May 1985 1-3

Introduction SunCore Reference Manual

13. Terminate SunCore.

In providing the application programmer with the capabilities needed to draw pictures, Sun-
Core breaks the interface into six functional areas:

Control
directs the major actions of SunCore, such as startup, shutdown, selection and deselection

of view surfaces, and so on.

Segments
control the creation, closing, and removal of segments. Segments are then used to collect

sets of:

Qutput Functions
also known as output primitives, which describe the drawing of lines and line sequences,

shaded regions, text, and markers.

Attributes
control the way in which output primitives actually appear in the final image (solid or dotted

lines, for instance).

Transformations
control the major appearances of pictures, such as orientation (rotation), scaling, and trans-

lation. Transformations also control projection type and clipping.

Input Functions
handle the interaction with the user via the keyboard and the mouse.

1.2. Getting Started With SunCore

This section provides a very simple example of a SunCore application program. The program
draws a martini glass on the screen. This program demonstrates the use of:

e Creating a temporary segment (see Segmentation and Naming),
e Moving to an absolute position (see Output Primitives),

e Using the polyline drawing routines (see Output Primitives),

e Using the absolute line drawing routines (see Output Primitives),

The annotated code of glass.c is shown below, followed by the e compiler call used to create the
executable program.

The first thing in the program is an include statement to get the definitions of constants:

#include <usercore.h>

Then there are the definitions of the relative points for the polyline function to draw the glass:

static float glassdx[] {—10.0,9.0,0.0,-14.0,30.0, —-14.0,0.0,9.0,-10.0};
statlic float glassdy[] {0.0,1.0,19.0,15.0,0.0,-15.0,-19.0,-1.0,0.0};
int bwldd(): /* Device driver name for Sun-1 Monochrome %/

/* display — see appendiz B for details */
struct vwsurf vwsurf = DEFAULT_VWSURF (bwldd);

nou

1-4 Revision F of 15 May 1985

©

O

SunCore Reference Manual

Then comes the matn program with some initialization code:

main{)

{

/* First initiglize the SunCore Package */
if (initialize_core(BASIC, NOINPUT, TWOD))
exit(1);
/* Elements of vwsurf may be set up here */
/* See Appendir B for delails */

/* Then initialize the monochrome display */

if (initialize view_surface(&vwsurf, FALSE)})
exit (2);
/* Then we must select that view surface */
if (select_view_surface (&vwsurf))
exit (3);
/* Then define the limits of the viewport */
set_viewport_2(0.125, 0.875, 0.125, 0.75);
/* Then set a convenient window */
set_window (—50.0, 50.0, -10.0, 80.0):
/* Create a temporary segment */
create_temporary_segment () ;

Here s the actual code that draws the picture:

/* Now move lo our origin peint */
move_abs_2 (0.0, 0.0);

/* And draw the outline of the glass */
polyline_rel_2(glassdx, glassdy, 9):

/* Then move to draw the liguid surface */
move_rel_2(—12.0, 33.0);

/*t Draw the liguid surface */
line_rel_2(24.0, 0.0);

Finally, we close things and ezt the program:

/* Now close the segment */
close_temporary. segment () ;

/* Wail for 10 seconds */
sleep {10);

/%t Before closing the view surface */
deselect_view_surface (&vwsurf);

J/* and closing down SunCore %/
terminate_core();

Now we compile this program using the C compiler:

tutorial¥ cc glass.c -lcore -—lsunwindow —lplxrect —1lm

Revision F of 15 Mzay 1985

Introduction

1-5

Introduction SunCore Reference Manual

In the above example, the options:

—lcore selects the SunCore run-time library from fusr/lib/libcore.a,
—lsunwindow selects the window system library,

—lpixrect selects the pixrect library,

—Im selects the correct math library.

When the compilation is complete, the final program is in the file a.out and may be run by typ-
ing its name.

This is. a very simple example, using the bare minimum of SunCore’s capabilities. There are
many 1rnprovements that could be made, such as adding an olive on a cocktail stick and so on.
The Progreamming Ezamples section of this manual wil} cover other areas of the graphics pack-
age. '

1.3. The SunCore Lint Library

SunCore provides a lint library which provides type checking beyond the capabilities of the C
compiler. For example, you could use the SunCore lint library to check the martini-glass draw-
ing program with command like this:

tutorial¥? lint glass.c -—lsuncore

but note that the error messages that lint generates are mostly warnings, and may not neces-
sarily have any effect on the operation of the program. For a detailed explanation of linit, see
the lint manual in the Programming Tools manual.

1.4. The Coordinate Systems

Applications programs which draw pictures using SunCore communicate in world coordinates.
World coordinates are a device-independent, two or three-dimensional, Cartesian coordinate sys-
tem for describing objects. Output primitives are given to SunCore routines in World Coordi-
nates (WC). However, if the world_coordinate matrix is used, SunCore concatenates this
matrix with the view transform so that output primitives are ﬁrst transformed by this matrix
from ‘model’ or ‘object’ coordinates to world coordinates. This means that the user can supply
primitives in ‘model’ coordinates, each model or object being moved into world coordinates
according to the current world_coordinate_matriz.

In three dimensions, the user may choose to use right-handed or left-handed world coordinates.
In a right-handed system, if (for example) the z coordinate increases to the right and the g coor-
dinate increases upwards, then the z coordinate increases towards the viewer. In the correspond-
ing left-handed system, the z coordinate increases to the right, the y coordinate increases
upwards, and the z coordinate increases away from the viewer.

The composite viewing transform is formed from the world_coordinate_matriz and the viewing
parameters. SunCore routines transform the output primitives from world (or model) coordi-
nates to Normalized Device Coordinates (NDC), which are a left-hand coordinate system
bounded such that: 0.0<z,y,2<1.0

1-8 Revision F of 15 May 1985

-

SunCore Reference Manual Introduction

Since current Sun view surfaces have four-to-three aspect ratios, the default normalized device
coordinate space has the y extent bounded to 0.0<y<0.75. Primitives are stored in the Display
List (also called the Pseudo Display File or PDF), in Normalized Device Coordinates. The user-
specified window in world coordinates is mapped (and optionally clipped) to the user-specified
viewport within normalized device coordinate space. The entire normalized device coordinate
space is then mapped to the selected physical view surfaces.

1.5. Details of Using SunCore

This section describes the details of creating applications programs to run with SunCore.

1.5.1. Classification of Functional Capabslities
The ACM Core specification defines levels of functional capability for a graphics package which
implements the specification. The table below shows the classification. Terms such as BUFFERED

and DYNAMICA are defined as constants in the file usercore.k, discussed below.

Table 1-1: Output Capabilities

Output Capabilities
Functional Capability = BASIC BUFFERED DYNAMICA DYNAMICB DYNAMICC

QOutput Primitives and

Primitive Attributes. yes yes yes yes yes
Viewing yes yes yes yes yes
Control yes yes yes yes yes
Temporary Segments yes yes yes yes yes
Retained Segments no yes yes yes yes
Highlighting Segment

Attribute no yes yes yes yes
Visibslity Segment

Attribute no yes yes yes yes

Image Transformation
Segment Attribute

Detectability Segment 10 es* es* . * es*
Attribute y y yes ¥

no no yes yes yes

* This feature is only available if input levels SYNCHRONOUS or COMPLETE are supported. Note
that SunCore supports all output levels up to DYNAMICC.

Revision F of 15 May 1985 1-7

Introduction

SunCore Reference Manual

Table 1-2: Input Capabilities

Input Capabilities

Functional Capability NOINPUT SYNCHRONOUS COMPLETE
Device Initialization and Termination no yes yes
Synchronous Interaction Functions no yes yes
ECI‘IO Control ' no yes yes
Ex{\)licit Enable or Disable no no yes
Event Queue Management no no yes
Sampled Device Functions no no yes
Associations no no yes

Note that SunCore supports up to the SYNCHRONOUS input level.

Table 1-3: Dimension Levels Supported

Functional Capability

Dimension Levels Supported
TWOD THREED

Two Dimensional Primittves,
Attributes, and Viewing.

Three Dimensional Primitives,
Attributes, and Viewing.

yes yes

no yes

Note that SunCore supports the THREED dimension level.

1.5.2. Error Reporting

SunCore performs consistency checks on arguments passed to its various routines. Any time an
error is detected, the name of the routine which raised the error condition and the text of the

error message are printed on the standard error (stderr).

All SunCore interfaces are functions that return a value. If a function completes successfully, it
returns the value zero. If the function raises any error conditions, it returns a non-zero value.
SunCore always identifies the name of the routine which raised the error condition. The ACM
Core specification defines specific error numbers. These do not correspond to SunCore’s error

numbers in the current release.

1-8

Revision F of 15 May 1985

SunCore Reference Manual Introduction

1.5.8. Useful Constants in the usercore.h Include File

The file usercore.h defines a collection of constants which the application programmer should use
in lieu of hardwired constants in code. The constants are described here (but their values are
not stated).

Useful Constants:
TRUE A universal value denoting the truth value.
FALSE A universal value denoting the false value.

MAXVSURF The maximum number of view surfaces which may be initialized at any one time.

Initialization Constants. These constants describe the levels of the SunCore facilities which the
application program will use. These constants should be used when calling the tnitialize_core
function.

BASIC Denotes the basic output level. See the tables above for the classifications.
BUFFERED Denotes the buffered output level. See the tables above for the classifications.

DYNAMICA Indicates that the application package wishes to use two-dimensional translation facil-
ities. See the tables above for the classifications.

DYNAMICB Indicates that the application package wishes to use two-dimensional scaling, rota-
tion, and translation facilities. See the tables above for the classifications.

DYNAMICC Indicates that the application package wishes to use three-dimensional scaling, rota-
tion, and translation facilities. See the tables above for the classifications,

NOINPUT Indicates that this application package will not use any input facilities. See the
tables above for the classifications.

SYNCHRONOUS
Indicates that this application program will use synchronous input facilities. See the
tables above for the classifications.

COMPLETE SunCore does not support this input level. See the tables above for the
classifications.

TWOD Indicates that the application package will only use two-dimensional functions. See
the tables above for the classifications.

THREED Indicates that the application package will use both two-dimensional and three-
dimensional functions. See the tables above for the classifications.

Character Quality Constants. These constants should be used when calling the set_charprecision
function.

STRING Denotes low quality text.

CHARACTER
Denotes medium quality text.

Transform Constants. These constants should be used when calling the set_projection and
set_coordinate_system_type functions.

Revision F of 15 May 1985 1-9

Introduction SunCore Reference Manual

PARALLEL Value to indicate paraflel projection.

PERSPECTIVE
Value to indicate perapective projection.

RIGHT Value to indicate right-handed world coordinate system.
LEFT Value to indicate left-handed world coordinate system.

Image Transformation Type Constants. These constants are wused when calling the
set_image_transformation_type and set_segment_image_transformation_type functions.

NONE Indicates a retained segment which cannot be transformed.
XLATE2 Indicates a retained segment which may be translated in two dimensions.

XFORM2 Indicates a retained segment which may be fully translated, scaled, and rotated, in
' two dimensions.

XLATE3 Indicates a retained segment which may be translated in three dimensions.

XFORM3 Indicates a retained segment which may be fully translated, scaled, and rotated, in
three dimensions.

Line Style Constants. These constants should be used when calling the set_linestyle attribute for
output primitives.

SOLID Solid line.
DOTTED Dotted line,
DASHED Dashed line.

DOTDASHED
Dashed and dotted line.

Text Font Selection Constants. These constants should be used when calling set_font.
ROMAN For character precision, a Roman font; for string precision, a raster font.
GREEK For character precision, a Greek font; for string precision, the default raster font.

SCRIPT For character precision, a Script font; for sfring precision, a small raster font.

OLDENGLISH
For character precision, an Old English font; for string precision, equivalent to
ROMAN.

STICK. For character precision, 2 stick font; for atring precision, equivalent to GREEK.

SYMBOLS For character precision, a set of symbols; for string precision, equivalent to SCRIPT.

Input Device Constants. These constants should be used when calling the initialize_device and
terminate_device functions and other input functions.

PICK The Psck device. The mouse in SunCore.
KEYBOARD The Keyboard device.

1-10 Revision F of 15 May 1985

SunCore Reference Manual Introduction

STROKE The freehand stroke device. The mouse in SunCore.
LOCATOR The Locator device. The mouse in SunCore.
VALUATOR The Valuator device. The mouse in SunCore.
BUTTON The Button device. The mouse in SunCore.

RasterOp Constants. These constants should be used when calling the sef_rasterop function.

NORMAL Indicates normal copy mode.
XORROP Indicates bitwise exclusive or of source and destination.

ORROP Indicates bitwise or of source and destination.

Polygon Rendering Style Conatants. These constants should be used when calling the
set_polygon_interior_style and set_shading_parameters functions.

PLAIN Indicates area fill with the color indicated by the fill index primitive attribute.

SHADED Indicates shading according to the current shading parameters (for 3-D polygons
only).

CONSTANT Indicates constant user-specified shade.

GOURAUD Indicates Gouraud shading.

PHONG Indicates Phong shading.

1.6. Further Reading

J. D. Foley and A. Van Dam:
Fundamentals of Interactive Computer Graphics, Addison-Wesley, 1982.

W. M. Newman and R. F. Sproull:
Principles of Interactive Computer Graphics (2nd edition), McGraw-Hill, 1979.

ACM SIGGRAPH:

Conference Proceedings.
IEEE Computer Graphics and Applications Magazine

Computer Graphics ACM SIGGRAPH Quarterly, Vol 13, #3, August 1979
Status Report of the Graphics Standards Planning Committee.

ACM Computing Surveys, Vol 10, #4, Dec 1978
Special Issue on Graphic Standards.

Computer Graphics World, Vol 5, #8, August 1982
The SIGGRAPH Core System Today.

Revision F of 15 May 1985 1-11

Chapter 2

Control

The SunCore graphics package provides several functions for controlling the system. These
functions are discussed here, and the sections and subsections which follow describe the indivi-
dual functions in detail.

Initialization and termination
of SunCore provide for the initialization of the package to a specific and predetermined
state, and for closing it down when the applications program has finished using the graphics
package.

View surface control

provides for the initialization, termination, and selection of view surfaces, A view surface
must be initialized before it can be used. A view surface should be terminated when the
applications package has finished with it. Functions are provided to add view surfaces to the
set of selected view surfaces, and to remove view surfaces from that set. View surface names
in SunCore are structures, The wvwsurf structure is declared in usercore.h and is
described in appendix B. SunCore supports several view surfaces to date; see appendix B
for details of view surfaces.

Picture change control
provides for the “batching” of changes to dynamic segment attributes so that the application
program may force the simultaneous occurrence of a group of changes.

Frame control
denotes the function called new_frame, which clears the view surface and redraws all seg-
ments except temporary segments,

Error handling
is that part of SunCore concerned with reporting errors to the application program.

2.1. Initialization and Termination

There are two functions provided for initializing and terminating SunCore. The application
program should call initialize_core before making any other calls upon the graphics sys-
tem. terminate_core should be the last call to SunCore before the application program
itself is finished.

Revision F of 156 May 1985 2-1

Control - SunCore Reference Manual

2.1.1. initialize_core — Initialize the SunCore System

initialize_core initializes the Core graphics package to a known state.

initialize core (output_level, input_level, dimension)

int output_level; /* 8SunCore Level for Cutput t/
/% BASIC, BUFFERED, DYNAMICA x/
/* DYNAMICB, DYNAMICC)
int input_level; /* 8SunCore Level for Input k/
/* NOINPUT, SYNCHRONOUS, COMPLETE */
int dimension; /* Number of Dimensions Required */
/* TWOD, THREED */

SunCore supports up to output level DYNAMICC of the ACM Core specification, up to input level
SYNCHRONOUS of the ACM Core, and dimension level THREED of the ACM Core.

Errors returned from initialize_core:
e The SunCore system is already initialized.
o The specified output level cannot be supported.
e The specified input level cannot be supported.

e The specified dimension cannot be supported.

2.1.2. terminate_core — Close Down the SunCore System

terminate_core closes down the Core graphics package.

terminate_core()

2.2. Initializing and Selecting View Surfaces

View surface control provides for the initialization, termination, and selection of view sur-
faces. A view surface must be initialized before it can be used. A view surface should be ter-
minated when the applications package has finished with it. Examples of view surfaces are the
Sun color display and the Sun monochrome bitmap display. Functions provided in this category
are:

initialize_view_surface
performs the functions required to gain access to a specified view surface.

terminate_view_surface
terminates access to the specified view surface.

select_view_surface
adds the specified view surface to the set of selected view surfaces for output.

deselect_view_surface
removes the specified view surface from the set of selected view surfaces.

2-2 Revision F of 15 May 1985

SunCore Reference Manual Control

inquire_selected_surfaces
determines which view surfaces are currently selected (not yet implemented).

2.2.1. initialize_view_surface — Initialize a View Surface
jnitialize_view_surface initializes the Core package for a specific view surface.

initialize_view_surface(surface_name, type)
struct vwsurf *surface_name; /* See appendix B */
int type; /* TRUE for hidden surface removal */
/* FALSE otherwise */

The surface_name argument to the function specifies a physical view surface. View surface
names in SunCore are structures. The vwsurf structure is defined in the usercore.h header file.
Only color devices support hidden-surface removal.

Errors returned from initialize_view_surface:
e The view surface specified by sur face_name is already initialized.

e The view surface specified by surface_name does not have any output device associ-
ated with it.

No other view surfaces can be initialized at this time.

e The specified view surface does not support hidden surface removal.

2.2.2. terminate_view_surface — Close Down a View Surface
terminate_view_surface closes down the specified view surface.
terminate_view_surface (surface_name)

struct vwsurf ‘*surface_name; /* See appendix B */

Errors returned from terminate_view_surface:

o The view surface specified by surface_name is not initialized.

2.2.9. select_view_surface — Add View Surface to Selected Set
select_view_sur face adds a specified view surface to the list of selected view surfaces.

select_view_surface (surface_name)
struct vwsurf *surface_name; /* See appendix B */

A segment is only drawn on those view surfaces marked as “selected” at the time that the seg-
ment is created.

Errors returned from select_view_surface:

Revision F of 15 May 1985 2-3

Control SunCore Reference Manuali

e A segment is open.

The view surface specified by surface_name is not initialized.

The view surface specified by surface_name is already selected.

The view surface specified by surface_name cannot be selected.

2.2.4. deselect_view_surface — Remove View Surface from Selected Set

deselect_view_surface removes a specified view surface from the list of selected view sur-
faces.

deselect_view_surface (surface_name)
struct vwsurf *surface_name; /* See appendix B %/

Segments created after deselect_view_surface is called will not be drawn on the
deselected view surface.

Errors returned from deselect_view_sur face:
e A segment is open.

e The view surface specified by surface_name is not selected.

2.3. Batching of Updates

SunCore provides the facility for the application program to indicate that a sequence of updates
is being started, and the graphics package stacks up these picture changes until an
end_batch_of_updates function call indicates that the end of the sequence of updates has
occurred. Picture changes or ‘updates’ include dynamic segment attributes such as visibility,
detectability, translate, rotate, and scale.

2.8.1. begin_batch_of_updates — Indicate Start of a Batch of Updates
begin_batch_of_updates indicates the beginning of a batch of updates to the picture. All
modifications to dynamic attributes of segments between calls to begin_batch_of_updates

and end_batch_of_updates are saved up and executed simultaneously.

begin_batch_of_updates ()

Errors returned from begin_batch_of_updates:

¢ There has been no end_batch_of_updates function call since the last
begin_batch_of_updates function call.

9.4 Revision F of 15 May 1985

SunCore Reference Manual Control

2.8.2. end_batch_of_updates — Indicate End of a Batch of Updates

end_batch_of_updates indicates the end of a batch of updates. The batch of changes to
dynamic attributes of segments is executed,

end_batch_of_updates ()

Errors returned from end_batch_of_updates:

® There has been no corresponding begin_batch_of_updates function call.

2.4. Frame Control

2.4.1. new_frame — Start New Frame Action for Selected View Surfaces

nev_frame starts new frame action for currently selected view surfaces. The view surface is
cleared, and all visible retained segments are redrawn,

nev_frame ()

Errors returned from new._frame:

e The set of currently selected view surfaces is empty.

2.5. Error Control

2.5.1. report_most_recent_error

report_most_recent_error obtains a copy of the most recently detected error number.

report _most_recent_error {error_number)
int ‘*error_number;

A value of zero returned to error_number indicates that there has been no error since the
last call on report_most_recent_error.

2.5.2. print_error

To print the message associated with this error_number on the standard error file (stderr),
use the function call:

Revision F of 15 May 1985 2-5

Control SunCore Reference Manual

print_error ("Your message", error_number);
int error_number;

where “Your message” is any character string that the user wants printed. The error message is
printed on the line following ‘“Your message”.

2.8. Drag Control (SunCore Extension)

2.6.1. set_drag

An additional function, set_drag, writes all output to the bitmap or color framebuffer with
exclusive or’ing.

set_drag (mode)
int mode; /* FALSE = uses the rasterop */
/* set by set_rasterop */
/* TRUE = enable XOR'ing */

If dragging is enabled, all output to the device drivers is done with exclusive OR’s to the data in
the displays. This feature makes dragging more convenient. For example, if you want to drag
segment A across segment B, leaving segment B’s image unaffected, do the following sequence of
operations:

e Set A visibility off,

Set dragging on,

Set A visibility en,
Drag segment A to the desired location,
e Set A visibility off,

Set dragging off,
e Set A visibility on.

See also: set_rasterop.

2-6 Revision F of 15 May 1985

-

Chapter 3

Viewing Operations and Coordinate Transforms

Specifying a viewing operation may be thought of as specifying the arbitrary orientation of a syn-
thetic camera. The resulting view of the object (the snapshot) can appear on one or more view
surfaces. The viewing operations are provided for two reasons:

1. To specify how much of the world coordinate space should be visible, and

2. To specify a mathematical transformation between the world coordinate system and the nor-
malized device coordinate system.

A viewing operation is specified by a view volume that defines the portion of world coordinate
space which is to be projected onto a view plane (also called a projection plane), and a rectangu-
lar viewport in normalized device coordinate space to which the projected image will be mapped.
The viewing operation is sufficiently general as to support both parallel and perspective projec-
tions. The parallel projection includes the orthographic, axonometrie, isometric, cavalier, and
cabinet projections, as special cases.

Once the camera model is specified via calls to set_view_reference_point,
set_view_plane_normal, and so on, a 4 X 4 view transform matrix is constructed. Then the
process of generating an image on a view surface is:

1. View-transforming the output primitives (using the view transform preceded by any model-
ling transform the user has specified} to normalized device coordinates.

Opticnal clipping to the window.
Scale the output to map the window to the viewport.
Optional image transformation as specified by dynamic segment attributes.

Optional clipping to the viewport,

S T

Convert to device coordinates and draw the picture,

3.1. Windows, View Volumes, and Clipping

The window is the bounded portion of the view plane containing projected objects which will
appear within the viewport on the view surface. The view surface corresponds to the physical
device on which the picture is drawn. The window is the logical region, specified in world coor-
dinates, in which the image appears.

Specifying a window involves defining a coordinate system for the view plane. The coordinate
system for the view plane is called the UVW coordinate system, to distinguish it from the world

Revision F of 15 May 1985 31

Viewing Operations and Coordinate Transforms SunCore Reference Manual

coordinate system and the normalized device coordinate system, both of which are XYZ coordi-
nate systems.

The origin of the UVW coordinate system is at the point where the line through the view refer-
ence point parallel to the view plane normal vector intersects the view plane. In the default
case, the view plane distance is zero, and so the view reference point lies in the view plane and is
the origin of the UVW coordinate system.

The direction of the V axis is determined from the view up vector. The view up vector is
specified in world coordinates relative to the view reference point.

The positive U axis of the UVW coordinate system is 90 degrees clockwise from the positive V
axis, as viewed in the direction of the view plane normal vector. The positive U and V axes,
together with the view plane normal vector, form a left handed coordinate system. The window
is specified in terms of maximum and minimum u and v values (see the set_window function).

The diagram below shows the various components of the viewing system.

Front
Clipping Plane
View
Plane Distance
View Up View Back

Vector Plane Clipping Plane

Front r
Distance :
\\ ! -~
| e
I - ! View
; - 1| Plane Normal
L 1
— '
= !
\
Back
Distance
View
Center of Reference Point
Projection

Figure 3-1: Components of Viewing System

3.9 Revision F of 15 May 1985

SunCore Reference Manual

Viewing Operations and Coordinate Transforms

3.2. Default Values of Viewing Operation Parameters

Table 3-1: Default Values of Viewing Operation Parameters

Parameter

Viewing Operation Parameters

Default Value

View Reference Point
View Plane Normal
View Distance

Front Distance

Back Distance

Type of Projection
Window

View Up Vector

Normalized Device
Coordinate Space

(0, 0, 0)

(0, 0, —1)

0

0

1

Parallel (0, 0, 1) (perpendicular to the UV plane)
(0, 1, 0, 0.75)

(0, 1, 0)

0.0<2,2<1.0
0.0<y<0.75

Viewport (0.0, 1.0, 0.0, 0.75, 0.0, 1.0)
Table 3-2: Default Values of Viewing Control Parameters
Viewing Control Paramelers
Parameter Default Value

Window Clipping
Output Clipping
Front Plane Clipping
Back Plane Clipping

World Coordinate System

On

off

of

off
Right handed

Revision F of 15 May 1985

3-3

Viewing Operations and Coordinate Transforms SunCore Reference Manual

Table 3-3: World Coordinate Matrix Parameters

World Coordinate Matriz Parameters (Modelling Transform)

Parameter Default Value
1000
World Coordinate Matrix 0100 (identity)
0010
0601

Table 3-4: Image Transformation Parameters

Image Transformation Parameters
Paremeter Default Value
SX, SY, SZ 1, 1, 1 (no scaling)
AX, AY, AZ 0, 0, 0 (no rotation)
TX, TY, TZ 0, 0, O {no translation)

3.3. Setting 3D Viewing Operation Parameters

SunCore provides a number of functions for setting parameters of the viewing operations.
There are a number of separate calls available for setting individual parameters, then there is a
composite set_viewing_parameters function which sets all the viewing parameters in one
fell swoop. The individual calls provided are summarized here and described in detail in the sub-

sections following.

3-4 | Revision F of 15 May 1985

SunCore Reference Manual

Table 3-5: Summary of Func

Viewing Operations and Coordinate Transforms

tions for Setting Viewing Control Parameters

Function

Description

sot_viaew_reference_point

set_viev_plane_normal

gsot_view_plane_distance

set_view_depth

set_projection

set_view_up_2, set_view_up_3

sat_window

set_viewport_2, set_vliewport_3

sot_ndc_space_2, set_ndc_space_3

set_viewing_parameters

Sets the view reference point in world coordinates.

Defines a vector which determines the view plane, rela-
tive to the view reference point.

Defines the view plane distance from the view reference
point along the view plane normal vector.

Defines the distance from the view reference point to
the ‘front’ clipping plane (also known as the ‘hither’ or
‘near’ clipping plane) and the distance from the view
reference point to the ‘back’ clipping plane (also known
as the ‘yon’ or ‘far’ clipping plane).

Selects perspective or parallel projection, and defines
the center of projection {for PERSPECTIVE projection)
or direction of projection (for PARALLEL projection).

Establish the view up direction in the view plane for
two or three-dimensional viewing.

Establishes the window boundaries in the view plane.

Establish the viewport boundaries in normalized device
coordinates for two or three-dimensional viewing.

Establish the size of Normalized Device Coordinate
space for two or three-dimensional viewing,.

is a composite function which does all of the above
functions at one time,

None of the above calls have

any effect until the mnext call upon the

create_retained_segment or create_temporary_segment functions.

3.3.1. set_view_reference_point — Establish Reference Point for Viewing

set_view_reference_point sets the view reference point in world coordinates,

set_view_reference_point(x, y, z)

float x, vy, Z; VA

z, y, and 2 are the coordinates of the view reference point.

x, Y, and z coordinates */

In the absence of a specified refer-

ence point, the default view reference point is (0, 0, 0). The new reference point does not take

effect until a new segment is created.

Revision F of 15 May 1985

3-5

Viewing Operations and Coordinate Transforms SunCore Reference Manual

8.3.2. set_view_plane_normal -— Establish View Plane Normal Vector

set_view_plane_normal defines a vector relative to the view reference point, in world coor-
dinates.

set_view_plane_normal {dx_norm, dy_norm, dz_norm)
float dx_norm, dy norm, dz_norm;

The view plane is perpendicular to the view plane normal vector. In the absence of any informa-
tion to the contrary, SunCore establishes the view plane normal vector as (0, 0, —1). The new
vector does not take effect until a new segment is created.

Errors returned from set_view_plane_normal:

e No view plane normal direction can be established because dz_norm, dy_norm, and
dz_norm are all zero,

8.3.3. set_view_plane_distance — FEstablish View Plane Distance

set_view_plane_distance establishes the view plane distance,

set_view _plane_distance (distance)
fioat distance;

set_view_plane_distance establishes the view, or projection, plane. The view plane is per-
pendicular to the view plane normal vector, and is distance from the view reference point along
the view plane normal vector. Distances are measured in world coordinate units from the view
reference point. Positive values of distance correspond to the direction of the view plane normal
vector, and negative values correspond to the opposite direction. In the absence of any informa-
tion to the contrary, distance is set to zero, which means that the viewing plane is located at the
view reference point.

3.3.4. set_projection — Select Projection Type
set_projection selects the projection system for displaying.

set_projection({projection, dx_proj, dy_pre}, dz_proj)
int projection; /* Projection type */
/* PARALLEL; PERSPECTIVE */
float dx_preoj, dy_proj, dz_proj;
/* %, y, and z Deltas of Projection Point #/

The arguments dz_pros, dy_prof, and dz_pros specify a world coordinate point relative to the
view reference point. If projection is PARALLEL, objects project onto the view plane along lines
para,l]el:‘; to the vector specified by dz_proj, dy_proj, and dz_proj. If projection is PERSPECTIVE,
(dz_proy, dy_pros, dz_proj) specify a point in world coordinates called the center of projection
(often abbreviated to COP). Objects project onto the view plane along lines travelling towards
this point. Thus the center of projection is the apex of a pyramid whose edges pass through the
four corners of the view window.

Errors returned from set_projection:

36 Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

e The direction of projection cannot be established because dz, dy, and dz are all zero. Note
that this error is only applicable if parallel projection was selected.

3.3.5. set_view_up_2 — Establish 2D View Up Vector

set_view_up_2 establishes a view up vector in two dimensions. This vector defines the direc-
tion of ‘up’ for the window in world coordinates.

set_view_up_2{dx, dy)
float dx, dy; /* dx and dy coordinates */
Errors returned from set_view_up_2:

e The view up vector cannot be established because dz, and dy are both zero.

3.8.6. set_view_up_3 — Establish 3D View Up Vector

set_view_up_3 establishes a view up vector in three dimensions.

set_view_up_3(dx_up, dy_up, dz_up)
float dx_up, dy_up, dz_up;
/* x, y, and z Deltas of View Up Vector */

The three arguments dz_up, dy_up, and dz_up establish a view up vector relative to the view
reference point. The view up vector, when projected onto the view plane in the direction of the
view plane normal vector, specifies the positive V-axis of the UVW coordinate system in the view
plane. The U-axis is also in the view plane, such that the U-axis, the V-axis, and the view plane
normal vector form a left handed coordinate system. The V-axis is vertical and the U-axis
increases to the right when the view plane is mapped onto the view surface.

SunCore establishes the default view up vector as (0, 1, 0), which means that the Y-axis is up.

If the view plane normal vector is parallel to the Y-axis, this does not work and so SunCore
checks the view transforms for validity when creating a segment. SunCore may generate the
eITOr message:

*The current viewing specification is inconsistent'

Errors returned from set_view_up_3:

e No view plane normal direction can be established because dz_up, dy_up, and dz_up are
all zero.

3.8.7. set_ndc_space_2 — Fstablish Size of NDC Space

set_ndc_space_2 defines the size of the Normalized Device Coordinate space which can be
addressed on the view surface of all display devices available to the applications program and
within which viewports may be established.

Revision F of 15 May 1985 37

Viewing Operations and Coordinate Transforms SunCore Reference Manual

set_ndc_space_2 (width, height)
fleoat width, height;

Both width and height must be in the range of 0.0 to 1.0, and at least one of the parameters must
have a value of 1.0, Normalized Device Coordinates range from 0.0 to width in the horizontal
direction and from 0.0 to height in the vertical direction. The rectangle defined by this function
is mapped to the viewable area of any display device available to the application program so that
the entire rectangle is visible. Only uniform scaling of the rectangle is allowed; no changes can
be made to the viewport aspect ratio. SunCore maximizes the usable area of the dislay and
centers NDC space on each view surface.

The default Normalized Device Coordinate specification is width=1.0 and height=0.75. Either of
the set_ndc_space_2 or set_ndc_space_3 (see below) functions may be used at most
once per initialization of SunCore, and the Normalized Device Coordinate space established
applies to all view surfaces which the application program might use.

Ten SunCore functions require that Normalized Device Coordinate space be established before
they complete execution. If Normalized Device Coordinate space has not been explicitly defined
before any of these functions are executed, they implicitly define the Normalized Device Coordi-
nate space using default values. Functions which implicitly define Normalized Device Coordinate
space are:

e initialize_device

¢ initialize_group

e create_retained_segment
¢ create_temporary_segment

e set_viewport_2
® set_viewport_3
¢ set_viewing_parameters

® inquire_viewport_2
® inquire_viewport_3
* inquire_viewing.parameters

The depth of Normalized Device Coordinate space is set to 0.0 if set_ndc_space_2 is used in
a three-dimensional implementation.

Errors returned from set_ndc_space_2:

s set_ndc_space_2 or set_ndc_space_3 has already been called since the system was
initialized. ‘

e set_ndc_space_2 or set_ndc_space_3 has been called too late — the default
values have already been defined implicitly.

e A parameter is outside the range 0.0 to 1.0.
e One of width or height must have a value of 1.0.

o width or height has a value of 0.0.

3-8 Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

8.3.8. set_ndc_space_3 — Establish Size of NDC Space

set_ndc_space_3 defines the size of the Normalized Device Coordinate space which can be
addressed on the view surface of all display devices available to the applications program and
within which viewports may be established. Three-dimensional Normalized Device Coordinate
space is a rectangular parallelepiped lying within the Normalized Device Coordinate system.
This coordinate system is always left-handed, with the z-axis increasing to the right, the g-axis
increasing upwards, and the z-axis increasing away from the viewer.

. set_ndc_space_3(width, height, depth}
float width, height, depth;

All of the parameters width, keight, and depth must be in the range of 0.0 to 1.0, and at least one
of width or height must have a value of 1.0. Normalized Device Coordinates range from 0.0 to
width in the horizontal direction, from 0.0 to hesght in the vertical direction, and from 0.0 to
depth in the direction away from the viewer. The rectangle of size width by height in the z=0
plane of Normalized Device Coordinate space is mapped to the viewable area of any display dev-
ice available to the application program so that the entire rectangle is visible. Only urniform
scaling of the rectangle is allowed — no changes can be made to the viewport aspect ratio. Sun-
Core maximizes the usable area of the display and centers NDC space on each view surface.

The default Normalized Device Coordinate specification is width=1.0, height=0.75, and
depth=1.0. Either of the set_ndc_space_3 or set_ndc_space_2 (see above) functions
may be used at most once per initialization of SunCore, and the Normalized Device Coordinate
space established applies to all view surfaces which the application program might use.

Ten SunCore functions require that Normalized Device Coordinate space be established before
they complete execution. If Normalized Device Coordinate space has not been explicitly defined
before any of these functions are executed, they implicitly define the Normalized Device Coordi-
nate space using default values. Functions which implicitly define Normalized Device Coordinate
space are:

e initialize_device

¢ injtialize_group

& create_retained_segment
¢ create_temporary_segment

¢ set_viewport_2
¢ set_viewport_3
® set_viewing_parameters

¢ inquire_viewport_2
inquire_viewport_ 3
e inquire_viewing_parameters

L

Errors returned from set_ndc_space_3:

¢ set_ndc_space_2 or set_ndc_space_3 has already been called since the system was
initialized.

e set_ndc_space_2 or set_ndc_space_3 has been called too late — the default
values have already been defined implicitly.

Revision F of 15 May 1985 3-9

Viewing Operations and Coordinate Transforms SunCore Reference Manual

e A parameter is outside the range 0.0 to 1.0.
e One of width or height must have a value of 1.0.

o width or height has a value of 0.0.

3.3.9. set_window — FEsteblish @ Window ¢n the View Plane

set_window establishes a window, defined by four coordinates in the UV coordinate system, in
the view plane.

set_window(umin, umax, vmin, vmax)
float umin, umax; /* Left and Right sides of window */
float wvmin, vmax; /* Bottom and Top of window */
SunCore establishes the default window as (0.0, 1.0, 0.0, 0.75).

Errors returned from set_window:

e umin is greater than or equal to umaz, which means that the left side of the window is
congruent with or to the right of the right side of the window.

e uvmin is greater than or equal to vmaz, which means that the top of the window is
congruent with or below the bottom of the window.

3.3.10. set_view_depth — Specify Planes for Depth Clipping
set_view_depth defines the front and back planes for depth clipping,.

set_view_depth(front_distance, back_distance)
float front_distance, back_distance;
/* Distances to Front and Back Planes */

Clipping to these depth bounds is comtrolled by set_front_plane _clipping and
set_back_plane_clipping. The front and back planes determine the 3-D view volume
which is mapped to the 3-D viewport.

SunCore initializes the front distance to 0.0 and the back distance to 1.0.
Errors returned from set_view_depth:

e front_distance is greater than back_distance, so that the back clipping plane is in front of
the front clipping plane.
3.3.11. set_viewport_2 — Establish Limits of Two-Dimensional Viewport

set_viewport_2 establishes the limits of the viewport in two-dimensional normalized device
coordinate space. The limits must lie in the range: 0<2 <NDCwidth and 0<y <NDCheight

set_viewport_2(xmin, xmax, ymin, ymax)

float xmin, xmax; /* Left and Right sides of Viewport */
float ymin, ymax; /* Bottom and Top of Viewport */

310 Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

SunCore establishes the viewport to (0.0, 1.0, 0.0, 0.75) at initialization time.

Errors returned from set_viewport_2:

e zmin is greater than or equal to zmaz, which means that the left side of the viewport is
congruent with or to the right of the right side of the viewport.

e ymin is greater than or equal to ymaz, which means that the top of the viewport is
congruent with or below the bottom of the viewport.

e Viewport exceeds Normalized Deviced Coordinate space.

3.8.12. set_viewport_3 — Establish Limits of Three-Dimensional Viewport

set_viewport_3 establishes the limits of the viewport in three-dimensional normalized device
coordinate space. The limits must lie in the range: 0<z<NDCwidth 0<y<NDCheight, and
0<z<NDCdepth

set_viewport_3(xmin, xmax, ymin, ymax, zmin, zmax)

float xmln, xmax; /* Left and Right sides of Viewport */
flcat ymin, ymax:; /* Bottom and Top of Viewport */
fleat =zmin, zmax; /* Front and Back of Viewport */

SunCore establishes the viewport to (0.0, 1.0, 0.0, 0.75, 0.0, 1.0) at initialization time.

Errors returned from set_viewport_3:

e zmin is greater than or equal to zmaz, which means that the left side of the viewport is
congruent with or to the right of the right side of the viewport.

e ymin is greater than or equal to ymaz, which means that the top of the viewport is
congruent with or below the bottom of the viewport.

e zmin is greater than or equal to zmaz, which means that the front of the viewport is
congruent with or behind the back of the viewport.

e Viewport exceeds Normalized Deviced Coordinate space.

28.13. set_viewing_parameters

set_viewing_parameters specifies all the viewing parameters with a single function call.

Revision F of 15 May 1985 311

Viewing Operations and Coordinate Transforms SunCore Reference Manual

set_vlewing_parameters (view_parameters)
struct {
float vwrefpt[3]; /* x, v, =z

flecat vwplnorm([3]}: /* dx, dy, dz

float viewdis; /* View Reference Point to View Plane

float frontdis; /* View Reference Point to Front Clip Plane
float backdis; /* View Reference Point to Back Clip Plane
int projtype:; /* PARALLEL or PERSPECTIVE */

float projdir([3}:; /* Meaning depends on projection type

float window[4]: /* umin, umax, vmin, vmax

float wvwupdirf3]; /* dx, dy, dz
float viewport[6]; /* xmin, xmax, ymin, ymax, zmin, zmax
} *view_parameters;

The view_paramelers argument is a pointer to a structure as defined above.
set_viewing_parameters fills in the associated structure with the current values of the
viewing parameters. The parameters are:

vwrefpt An array of three floats describing the coordinates of the view reference point.
vwplnorm An array of three floats describing the direction of the view plane normal vector.
viewdis A float describing the distance of the view plane from the view reference point.
frontdis A float describing the front clipping distance.

backdis A float describing the back clipping distance.

projtype A int describing the projection type.

projdir An array of three floats describing the direction of projection. The meaning of
projdir is dependent on the projection type:

PARALLEL projdir specifies the direction of projection.

PERSPECTIVE
projdir specifies the center of projection.

wa’ndouf An array of four floats describing the boundaries of the viewing window.
vwupdir An array of three floats describing the view up direction.

viewport An array of six floats describing the boundaries of the viewport.

3.4. Viewing Control

3.4.1. set_window_clipping — Enable Clipping in the View Plane
set_window_clipping enables or disables clipping against the window in the view plane.

set_window_clipping(con_off)
int on_off; /% TRUE = turn clipping on */
/* FEALSE = turn clipping off %/

312 Revision F of 15 May 1985

*/

*/
*/
*/

*/
*/
*/
*/

SunCore Reference Manual Viewing Operations and Coordinate Transforms

The on_off argument specifies whether window clipping is enabled or not. A value of FALSE dis-
ables window clipping, whereas a value of TRUE enables window clipping.

When window clipping is off, objects described to SunCore are not checked to insure that they
lie within the window when projected onto the view plane. When window clipping is on, objects
described to SunCore are clipped to the window.

SunCore initializes window clipping to TRUE.

Note that window clipping is done before segment primitives are written to the pseudo display
file. This means that subsequent image transformations may extend images beyond the bounds
of the viewport. SunCore has optional output clipping (an extension to the ACM Core
specification) to correct for this. See the set_output_clipping function described below.

3.4.2. set_front_plane_clipping — Enable Depth Clipping

set_front_plane_clipping enables or disables clipping against the front clipping plane.

set_front_plane_clipping{front_on_off)
int front_on_off;

The front_on_off argument specifies clipping enabled or disabled for the front clipping plane. A
value of FALSE means disable the clipping, and a value of TRUE enables the clipping. Clipping is
disabled by default.

3.4.3. set_back_plane_clipping — Enable Depth Clipping

set_back_plane_clipping enables or disables clipping against the back clipping plane.

set_back_plane_clipping(back_on_off)
int back _on_off;

The back_on_off argument specifies clipping enabled or disabled for the back clipping plane. A

value of FALSE means disable the clipping, and a value of TRUE enables the clipping. Clipping is
disabled by default.

3.4.4. set_output_clipping (SunCore extension)

SunCore supports output clipping, which is done after image transformations on segments, as
an option in addition to window clipping. The set_output_clipping function enables or
disables output clipping.

set_output_clipping(on_off)
int on_off; /* TRUE = turn on clipping */
/* FEALSE = turn off clipping */

If output clipping is enabled, it places a clipping process after the image transformation specified

by the dynamic segment attribute. This ensures that everything is correctly clipped to the
viewport.

Revision F of 15 May 1985 313

Viewing Operations and Coordinate Transforms SunCore Reference Manual

3.4.5. set_coordinate_system_type

set_coordinate_system_type selects a left-handed or right-handed world coordinate sys-
tem.

set_coordinate_system_type (type)
int type; /* PRIcHT = right handed coordinates */
/* LEFt = left handed coordinates */

3.4.6. set_world_coordinate_matrix_2 — Specify World or Modelling Transform

set_world_coordinate_matrix_2 specifiecs a 3 X 38 matrix containing the ‘world
transform’ or modelling transform. This matrix is concatenated with the ‘viewing transform’ to
give the ‘composite viewing transform’. The composite viewing transform is the transform that
is actually used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix. Currently, this function does not modify column 2 of the matrix.
This function may be called at any time, even in the midst of putting output primitives into a
segment.

set_world_coordinate_matrix_2 (array)
float array[3]([3]: /* [row] [column] */

Note that the matrix order is such that:

znew=z*arrayotytarray, gtarray,,

=z¥ *
mew=ztarray,,+y _array1'1+array2,l

3.4.7. set_world_coordinate_matrix_3 — Specify World or Modelling Transform

set_world_coordinate_matrix_3 specifies a 4 X 4 matrix containing the ‘world
transform’ or modelling transform. This matrix is concatenated with the ‘viewing transform’ to
give the ‘composite viewing transform’. The composite viewing transform is the transform that
is actually used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix. Currently, this function does not modify column 3 of the matrix.
This function may be called at any time, even in the midst of putting output primitives into a
segment,

set_world_coordinate_matrix_3(array)
fleat array[4]([4]: /%t [row] [column] *#*/

Note that the matrix order is such that:

znew=z*arrayyotyrarray, gtetarray, gtarrays,

ynew=z¥array,,+y*array, ;+ztarray, tarrayy,

3-14 Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

mew=zrarray,+y*array, g ta¥arrayytarrayy,

3.4.8. map_ndc_to_world_2 — Convert NDC to World Coordsnates

map_ndc_to_wor1d_2 maps a point in normalized device coordinate (NDC) space to its world
coordinates.

map_ndc_to_world_2(ndcx, ndcy, wldx, wldy)
float ndcx, ndcy;
float *wldx, *wldy:

3.4.9. map_ndc_to_world_3 — Convert NDC to World Coordinates

map_ndc_to_world_3 maps a point in normalized device coordinate (NDC) space to its world
coordinates.

map_ndc_to_world_3(ndcx, ndcy, ndcz, wldx, wldy, wldz)
float ndecx, ndey, ndcz;
float *wldx, *wldy, *wldz;

8.4.10. map_world_to_ndc_2 — Convert World to NDC Coordinates

map_world_to_ndc_2 maps a point in world coordinates to its normalized device coordinates
(NDC).

map_world_to_ndc_2{wldx, wldy, ndcx, ndcy)
float wldx, wldy;
float *ndcx, *ndcy;

8.4.11. map_world_to_ndc_3 — Convert World to NDC Coordinates

map_world_to_ndc_3 maps a point in world coordinates to its normalized device coordinates

(NDQ).

map_world_to_ndc_3(wldx, wldy, wldz, ndcx, ndcy, ndcz)
float wldx, wldy, wldz;
float *ndex, *ndcy, *ndecz;

3.5. Inquiring Viewing Characteristics

SunCore provides a number of functions for inquiring about parameters of the viewing opera-
tions. There are a number of separate calls available for inquiring about individual parameters,
then there is a composite inquire_viewing_parameters function which obtains all the
viewing parameters in one fell swoop. The individual calls provided are summarized here and

Revision F of 15 May 1985 315

Viewing Operations and Coordinate Transforms SunCore Reference Manual

described in detail in the subsections following.

Table 3-6: Summary of Functions for Inquiring Viewing Parameters

Function Deseription

inquire_view_reference_point Obtains the view reference point in world coordinates.

inquire_view_plane_normal Obtains a vector which determines the view plane, rela-
tive to the view reference point.

inquire_view_plane_distance Obtains the distance from the view reference point to
the view plane.

inquire_view_depth Obtains the distance from the view reference point to

the ‘front’ clipping plane (also known as the ‘hither’ or
‘near’ clipping plane), and the distance from the view
reference point to the ‘back’ clipping plane (also known
as the ‘yon’ or ‘far’ clipping plane).
inquire_projection Determines which projection type is in use, and returns
either the center of projection (for PERSPECTIVE projec-
tion) or direction of projection (for PARALLEL projec-

tion).

inquire_view_up_2 Determines the view up direction in two dimensions.

inquire_view_up_3 Determines the view up direction in three dimensions.

inquire_viewport_ 2 Obtains the coordinates of the two-dimensional
viewport,

inquire_viewport_3 Obtains the coordinates of the three-dimensional
viewport.

inquire_window Obtain the boundaries of the viewing window.

inquire_viewing_parameters is a composite function which does all of the above
functions at one time.

inquire_ndc_space_2 Determine the size of the normalized device coordinate
space in two dimensions.

inquire_ndc_space_3 Determine the size of the normalized device coordinate

space in three dimensions.

85.1. inquire_view_reference_point
inquire_view_reference_point obtains the coordinates of the view reference point.

inquire_view_reference_point(x, y, Zz}
float *x, *y, *z; /* x, y, and z Coordinates */

8.5.2. inquire_view_plane_normal

inquire_view_plane_normal obtains the coordinates of the view plane normal vector.

316 ‘ Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

@ inquire_view_plane_normal (dx, dy, dz)
float #*dx, *dy, *dz; /* x, y, and z deltas */

4.5.8. inquire_view_plane_distance

inquire_view_plane_distance obtains the distance of the view plane from the view refer-
ence point.

inquire view_plane_distance(view_distance)
float *view_distance;

8.5.4. inquire_view_depth

inquire_view_depth cbtains the distances of the front and back clipping planes from the
view reference point,

inquire_view _depth(front_distance, back_distance)
float *front_distance, *back_distance:;

8.5.5. inquire_projection

O inquire_projection obtains the current projection type and the coordinates of the center of
projection (for PERSPECTIVE projections) or the direction of projection (for PARALLEL projec-
tions).

inquire_projection(projection_type, dx, dy, dz)

int *projection_type;
float *dx, *dy, *dz; /* x, y, and z deltas */

8.5.6. inquire_view_up_2
inquire_view_up_2 obtains the view up direction in two dimensicns.

inquire_view_up_2(dx, dy)
float *dx, *dy.; /% x and y directions */

3.5.7. inquire_view_up_3
inquire_view_up_3 obtains the view up direction in three dimensions.

inquire_view_up_3(dx, dy, dz)
C::) float *dx, *dy, #%dz; /* x, y, and z directions */

Revision F of 15 May 1985 317

Viewing Operations and Coordinate Transforms SunCore Reference Manual

8.5.8. inquire_ndc_space_2

inquire_ndc_space_2 obtains the dimensions of the Normalized Device Coordinate space in
two dimensions.

inquire_ndc_space_2 (width, height)
float *width, *height;

38.5.9. inquire_ndc_space_3

inquire_ndc_space_3 obtains the dimensions of the Normalized Device Coordinate space in
three dimensions.

inquire_ndc_space_3(width, height, depth)
float *width, *height, *depth;

8.5.10. inquire_viewport_2
inquire_viewport_2 obtains the coordinates of the two-dimensional viewport.
inquire_viewport_2(xmin, xmax, ymin, ymax)

float *xmin, *xmax;
float *ymin, *ymax;

8.5.11. inquire_viewport_3
inquire_viewport_3 obtains the coordinates of the three-dimensional viewport.
inquire_viewport_3(xmin, xmax, ymin, ymax, zmin, zmax)
float *xmin, *xmax;

float *ymin, *ymax;
float *zmin, *zmax;

8.5.12. inquire_window

inquire_window obtains the boundaries of the viewing window.
inquire_window (umin, umax, vmin, vmax)

float *umin, *umax;
float *vmin, #*vmax;

3-18 Revision F of 15 May 1985

SunCore Reference Manual Viewing Operations and Coordinate Transforms

8.5.18. inquire_viewing_parameters

inquire_viewing_parameters returns a collection of information pertaining to the current
parameters of the viewing system.

inquire_viewing_parameters (view_parameters)
struct {
float vwrefpt[3]: /* x, y. z */
float wvwplnorm[3]: /* dx, dy, dz */

float viewdis; /* View Reference Point to View Plane */

float frontdis; /* View Reference Point to Front Clip Plane */
float backdis: /* Vliew Reference Point to Back Clip Plane */
int prejtype; /* TPARALLEL or PERSPECTIVE */

float projdir([3]: /* Meaning depends on projection type */

float window[4]; /* umin, umax, vmin, vmax */

float vwupdir[3]: /* dx, dy, dz */

float viewport[6]; /* xmin, xmax, ymin, ymax, zmin, zmax */
} *view_parameters;

The view_parameters argument is a pointer to a structure as defined above.
inquire_viewing_parameters fills in the associated structure with the current values of
the viewing parameters. The parameters are:

vwrefpt An array of three floats describing the coordinates of the view reference point.
vwplnorm An array of three floats describing the direction of the view plane normal vector.
viewdis A float describing the distance of the view plane from the view reference point.
frontdis A float describing the front clipping distance.

backdis A float describing the back clipping distance.

projtype A int describing the projection type.

projdir An array of three floats describing the direction of projection. The meaning of
projdir is dependent on the projection type:

PARALLEL ‘
projdir specifies the direction of projection.

PERSPECTIVE
projdir specifies the center of projection.

window An array of four f£loats describing the boundaries of the viewing window.
vwupdir An array of three floats describing the view up direction,

viewporf An array of six floats describing the boundaries of the viewport.

8.5.14. inquire_world_coordinate_matrix_2

inquire_world_coordinate_matrix_2 returns a 3 by 3 matrix containing the ‘world
transform’ or modelling transform. This matrix is concatenated with the ‘viewing transform’ to
give the ‘composite viewing transform’. The composite viewing transform is the transforjn that
is actually used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix.

Reviston F of 15 May 1985 3-19

Viewing Operations and Coordinate Transforms SunCore Reference Manual

inquire_world_coordinate_matrix_2(array)
float array[3][3]: /* array[row] [col] */

8.5.15. inquire_world_coordinate_matrix_3

inquire_world_coordinate_matrix_3 returns a 4 by 4 matrix containing the ‘world
transform’ or modelling transform. This matrix is concatenated with the ‘viewing transform’ to
give the ‘composite viewing transform’. The composite viewing transform is the transform that
is actually used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix.

inquire_world_coordinate_matrix_3(array)
float array[4][4]: /* array[row] [col] */

8.5.16. inquire_inverse_composite_matrix (SunCore Ertension)

SunCore uses the matrix inverse of the composite viewing transform internally for operations
such as map_ndc_to_world. This matrix may at times be useful to the applications program.

inquire_inverse_composite matrix (array)
float array[4][4]: /* arrayf[row] [col] */

8.5.17. inquire_viewing_control_parameters

inquire_viewing_control_parameters obtains the enabled status of clipping, and the
type of world coordinates in use.

inquire_viewing_control_parameters (windowclip, frontclip, backclip, type)

int *windowclip: /* TRUE 1f window clipping enabled */

int *frontclip; /* TRUE if front plane clipping enabled */
int “*backclip: /* TRUE if back plane clipping enabled */
int *type; /* RICGHT or LEFT world coordinate system type */

3-20 Revision F of 15 May 1985

Chapter 4

Segmentation and Naming

All output primitives for a graphical object are placed in a segment by SunCore on request
from the application program. Each segment defines an #mage which is a view of the object and
which is part of the picture displayed on the view surface. An application program describes an
object by creating a segment, calling output primitive functions (the results of which are placed
in the segment), and then closing the segment.

There are two kinds of segments, namely: temporary segments and retained segments. Retained
segments have an image_transformation_type which specifies how they can be
transformed. Retained segments can be made visible or invisible, detectable (via the pick input
function) or undetectable, highlighted, and may be transformed, depending on their type.

Retained segments have names (actually numeric identifiers) so that by placing output primitives
in such segments, the application programmer can selectively modify parts of the picture by
deleting and recreating segments {which effectively replaces them) so that their images change.
Retained segments are stored in the display list for later dynamic modification.

Temporary segments are not saved in the display list, are only drawn once, and may not be
modified dynamically. A new_frame action deletes all portions of any temporary segments
which have already been drawn.

4.1. Retained Segment Attributes

In the same way that primitive attributes affect the output primitives, retained segment dynamic
attributes affect the characteristics of retained segments. From now on, the term dynamic attri-
butes means the dynamic attributes of retained segments.

As well as being identified by the name of the retained segment into which they have been
placed, output primitives may also be assigned a primitive attribute known as a pick sdentifier or
pick-td. This means that within the single level of segmentation, another level of naming is pro-
vided. An example of the use of pick-id might be that all the character strings for (say) a menu
could appear in a single segment, where each character string is assigned a different pick-id.
Then when the user is using the mouse to select a specific itern from the menu, the application
program uses the PICK input function to find out which menu item was selected.

Retained segments have one static attribute and four dynamic attributes. Attributes, and the
means of setting them and enquiring their values, are described in detail in chapter 6.

The only static attribute of retained segments is the image_transformation_type. This
attribute can have one of five values:

Revision F of 15 May 1985 4-1

Segmentation and Naming SunCore Reference Manual

None
The segment is a retained segment on which no transformations may be applied.

Translatable 2-D
The segment is a retained segment which may be translated in two dimensions.

Transformable 2-D
The segment is a retained segment which may be fully translated, scaled, and rotated, in two

dimensions,

Translatable 3-D
The segment is a retained segment which may be translated in two or three dimensions.

Transformable 3-D
The segment is a retained segment which may be fully translated, scaled, and rotated, in two

or three dimensions.

SunCore sets image_transformation_type to the default value of NONE at initialization
time,

The four dynamic attributes of retained segments are defined here.

Visshility indicates whether the segment should have a visible image. There are only two
values of this attribute, namely: TRUE and FALSE.

SunCore sets the default value of visibility to TRUE at initialization time.

Highlighting indicates whether the segment’s image should be highlighted. In SunCore,
- highlighting is done by blinking. There are only two values of the highlighting
attribute, namely: TRUE and FALSE. When highlighting is turned on, the seg-

ment is blinked once.

SunCore sets the default value of highlighting to FALSE at initialization time.

Detectability indicates whether the retained segment can be detected by the pick device
‘ (mouse pointing device). See the await_pick function. The values for the
detectability attribute, are: 0 through 2,147,483,647. SunCore sets the default

value of detectabslity to 0 at initialization time.

Image_transformation
indicates how the image of a retained segment, in normalized device coordi-
nates, is scaled, rotated, or translated. A segment’s static
tmage_transformation_type attribute limits the values which its
image_transformation attribute may have. See the set of functions called
set_segment_image_zzz in chapter 6.

SunCore sets the default value of image_transformation to the identity
transformation at initialization time.

4.2. Retained Segment Operations

4-2 Revision F of 15 May 1985

SunCore Reference Manual Segmentation and Naming

4.2.1. create_retained_segment — Create @ New Segment

create_retained_segment creates a new, empty, open segment.

create_retained_segment (segment_name)
int segment_nameo; /* Segment ldentifier */
The segment_name argument defines a segment number in the range 1 through 2,147,483,647.

The image transformation type for the newly created segment is obtained from the current attri-
bute value for image_transformation_type. The dynamic attribute values for the newly
created segment are obtained from the default values of the dynamic attributes for retained seg-
ments.

Use the set_image_transformation_type funection, before calling
create_retained_segment, to specify whether the created segment is translatable or
transformable. After calling create_retained_segment, the specified segment is said to be
“open”. This means that output primitives can now be called upon to add graphics primitives
(lines, text, polygons, and so on) to this segment.

Only one segment can be open at a time.
Errors returned from create_retained_segment:
o The set of currently selected view surfaces is empty.
e The current viewing specification is inconsistent.
e There is already an open segment.
o A retained segment named segment_name already exists.

e The default value of image_transformation is invalild for the current
image_transformation_type.

4.2.2. close_rétained_segment — Close a Segment

close_retained_segment closes the currently open segment. Dynamic segment attributes
may be changed both before and after closing the segment.

close_retained_segment ()

Errors returned from close_segment:

e There is no open retained segment.

4.2.3. delete_retained_segment — Delete a Retained Segment

delete_retained_segment deletes a specifically named segment.

delete_retalined_segment (segment_name)
int segment_name; /* Segment Identifier *#*/

Revision F of 15 May 1985 4-3

Segmentation and Naming SunCore Reference Manual

The segment specified by the segment_name argument is deleted. If the segment being
deleted is the currently open segment, it is closed before it is deleted. The deleted segment is
erased from all view surfaces.

Errors returned from delete_retained_segment:

o There is no retained segment with the name segment_name.

4.2.4. rename_retained_segment — Rename a Retained Segment

rename_retained_seqment changes the name of a retained segment.

rename_retained_segment (segment_name, newname)
int segment_name; /* 0ld Segment Identifier */
int newname; /* New Segment Identifier %/

The segment whose identity is segment_name is renamed as newname, and this name must be
used in any future references to that segment. The segment segment_name is no longer acces-
sible. '

Errors from rename_retained_segment:
e There is no retained segment with the name segment_name.

o There is an existing retained segment named new_name.

4.2.5. delete_all_retained_segments
delete_all_retained_segments deletes all retained segments.
delete_all_retained_segments ()

All retained segments are deleted. If there is a currently open retained segment, it is closed
before it is deleted.

4.2.6. inquire_retained_segment_surfaces

inquire_retained_segment_surfaces obtains the number and names of the view sur-
faces upon which this segment gets drawn. These view surfaces were ‘selected’ when the seg-
ment was created.

inquire_retained_segment_surfaces (segment_name, array_size,
view_surface_array, number_of_surfaces)

int segment_name; /* Name of Segment */

int array size; /* Size of View Surface Array */

struct vwsurf view_surface_array[]. /* Array of view surface names */
int fnumber_of_surfaces; /* Returned number of surfaces */

The number of view surfaces selected at the time the retained segment name given by
segment_name was created is copied into number_of_surfaces. The names of those sur-
faces are copied into view_surface_array, where the array is an array of view surface

4-4 Revision F of 15 May 1985

SunCore Reference Manual Segmentation and Naming

names. array_size is specified by the caller, and is the size of view_surface_array.
The view surface structure is defined in the waercore.h header file.

If number_of_surfaces is greater than array_ssze, only array_size view surface names
are copied into view_surface_array. If array_size is less than or equal to zero, no names are
returned.

Errors from inquire_retained_segment_surfaces:

e There is no retained segment with the name segment_name.

4.2.7. inquire_retained_segment_names
inquire_retained_segment_names obtains a list of the retained segments names.

inquire_retained_segment_names (array_size, name_array, number_of_segments)

int array_size; /* BSize of Array */
int name_array([]: /* Segment Identifiers */
int *number_cf_segments; /* Number of Segments */

The name_array argument is an array which is to receive a list of the existing retained seg-
ments. array_size specifies the number of elements in name_array. The
number_of_segments argument is returned to the caller, and is the number of existing retained
segments. If the number of existing retained segments is greater than the size of the array, only
array_size segment names are copied into the array. If array._size is less than or equal to
zero, no segment identifiers are returned.

4.2.8. inquire_open_retained_segment

inquire_open_retained_segment obtains the name of the currently open retained seg-
ment.

inquire_open_retained_segment (segment_name)
int *segment_name; /* Segment Name */

The name of the currently open retained segment (if there is one) is copied into the
segment_name variable. If there is no currently open retained segment, segment_name is
set to zero.

4.3. Temporary or Non-Retained Segments

Temporary segments are used for transient images. Temporary segments cannot be modified
dynamically, and all portions of temporary segments which have already been drawn are deleted
upon any new frame action. Primitives placed in temporary segments are not stored in the
display list.

Revision F of 15 May 1985 4-5

Segmentation and Naming SunCore Reference Manual

4.8.1. create_temporary_segment
create_temporary_segment creates a new, empty, nonretained or temporary, segment.

create_temporary_segment ()

4.8.2. close_temporary_segment
close_temporary_segment closes the currently open temporary segment.

close_temporary_segment ()

4.3.8. inquire_open_temporary_segment — Get Temporary Segment Status

inquire_open_temporary_segment determines whether there is a currently open tem-
porary segment,

inquire_open_temporary_segment (cpen)
int t*open; /* Receives status of temporary segment */

The open argument receives the status of whether there is a currently open temporary segment:
FALSE There is no currently open temporary segment.

TRUE There is a currently open temporary segment.

4.4. Saving and Restoring Segments on Disk (SunCore Extension)
The two functions described in this section provide for saving segments on disk files and restor-
ing segments from disk files. Only one segment is saved in a given file.

4.4.1. save_segment — Save Segment on Disk File (SunCore Eztension)

save_segment saves the named retained segment on a specified disk file.
save_segment (segment_name, filename)
int segment_name; /* Name of segment to save */

char *filename; /* Pointer to a UNIX filename */

Saved primitives are in normalized device coordinates. Dynamic segment attributes are also
saved.

4-6 Revision F of 15 May 1985

SunCore Reference Manual Segmentation and Naming

4.4.2. restore_segment — Restore Segment from Disk File (SunCore Eztension)

restore_segment restores the named retained segment from a specified disk file. A pew seg-
ment is created and the segment from the disk file is copied into it. The segment is then closed.

restore_segment (segment_name, filename)

int segment_name; /* Name of segment to create */
char *filename; /* Pointer to a UNIX filename */

Revision F of 15 May 1985 4-7

O

Chapter 5

Output Primitives

Output Primitives serve to describe objects in the world coordinate system. When the output
primitive functions are called, primitives are placed in the currently open segment via drawing
commands which eventually produce line and character output.

SunCore supports six kinds of output primitives, namely moves, lines and polylines, polygonas,
text, markers and polymarkers, and rasters. The table below summarizes these types of func-
tions:

Table 5-1: Summary of Output Primitive Functions

Primitive Description

Move primitives alter the value of the Current Position (described below).

Line primitives describe lines in world coordinates.

Polyline primitives describe sequences of connected lines in world coordinates.

Polygon primitives describe a closed polygon which will be filled with a color. The polygon
primitives are a SunCore extension to the ACM Core specification.

Text primitives describe character strings on the display.

Marker primitives describe markers which are written on the display in a constant orien-
tation, independent of any transformations which may be in eflect.

Polymerker primitives describe a sequence of markers which are written on the display in a
constant orientation, independent of any transformations which may be in effect.

Rasters primitive describes an array of one-bit or eight-bit pixels.

All primitive operations use world coordinates. Some of these operations affect the value known
as the Current Posstion. The Current Position defines the current drawing location in the world
coordinate system. SunCore maintains the value of the Current Position at all times. At ini-
tialization time, the Current Position is initialized to the origin of the world coordinate system.

In both two dimensions and three dimensions, coordinate positions can be specified in terms of
absolute world coordinates, or coordinates can be specified relative to the Current Position.

A segment must be open (see the create_zzzzz_segment functions) before any output primi-
tives may be used. A segment contains a set of output primitives which can subsequently be
manipulated as a unit.

An output primitive is processed as follows:

Revision F of 15 May 1985 5-1

Output: Primitives , SunCore Reference Manual

The primitive is transformed to clipping coordinates using the composite viewing transform.
This places the window boundaries at umin=—32767, umaz=+32767, vmin=—32767, and
vmaz=+32767. The front clipping plane is at z=0 and the back clipping plane is at
z=+32767.

The primitive is then clipped to the boundaries just mentioned if window clipping is enabled.

The output primitive is then output scaled to the viewport which is specified in normalized
device coordinate space.

The resulting primitive is then copied to the display list or pseudo display file (PDF) if the
open segment is a retained segment.

Next, the primitive is transformed using the image tranoform which is an attribute of
retained translatable or retained transformable segments.

The output primitive is then clipped again to the viewport boundaries if output clipping is
enabled.

For each view surface which was selected when the segment was created, the primitive is
then converted to physical device coordinates and drawn on the view surface.

If a change is made to certain dynamic segment attributes of a retained segment, the primitives
in that segment are recovered from the PDF and used to erase the segment (if necessary) and
redraw the segment following steps 5 through 7 above. The diagram below shows the above pro-
cess in a graphical form.

Revision F of 15 May 1985

SunCore Reference Manual

Output
Primitives

View Transform
(Composite)

Window Clip
{Optional)

Viewport Scale
(to NDC Space)

Image
Transform

Output Clip
(Optional)

Convert to Device
Coords and Draw

Figure 5-1: Flow Diagram of Output Primitive Processing

Revision F of 15 May 1985

Output Primitives

5-3

Qutput Primitives SunCore Reference Manual

Output primitives are drawn with the static primitive attributes set by the primitive attribute
functions (see chapter 6).

5.1. Moving the Current Position
There are four functions for moving the Current Position. move_abs_2 and move_abs_3

change the Current Position to an absolute position in world coordinates, whereas move_rel_2
and move_rel_3 change the Current Position by a delta relative to the Current Position.

Note that move_abs_2 and move_rel_2 are simply short forms of the corresponding three-
dimensional functions. The z coordinate of move_abs_2 is the z coordinate of the Current
Position. The z delta of move_rel_2 is taken as zero.

5.1.1. move_abs_2 — Move to Absolute 2D Position

move_abs_ 2 moves the Current Position to an absolute position.

move_abs_2 (x, y)
float x, v /* x and y coordinates to move to */

The Current Position is set to the values of z and y in two-dimensional world coordinates.
move_abs_2 only sets the Current Position; no drawing commands are output.

5.1.2. move_abs_3 — Move to Absolute 3D Posttion

move_abs_3 moves the Current Position to an absolute position.

move_abs_3(x, y, z)
float x, Y. Z; /* x, y, and z coordinates to move to */

The Current Position is set to the values of 2, y, and z in three-dimensional world coordinates.
move_abs_3 only sets the Current Position; no drawing commands are output.
51.3. move_rel_2 — Move to Relative 2D Position

move_rel_2 increments the Current Position by the values given.

move_rel_2{dx, dy)
float dx, dy; /* x and y coordinate deltas */

The Current Position is set to the value of Current Position plus dz and dy in two-dimensioral

world coordinates. move_rel_2 only sets the Current Position; no drawing commands are
output.

5-4 Revision F of 15 May 1985

SunCore Reference Manual Output Primitives

5.1.4. move_rel_3 — Move to Relative 8D Position

move_rel_3 increments the Current Position by the values given.

move_rel_3(dx, dy, dz)
float dx, dy, dz; /* x, y. and z coordinate deltas */

The Current Position is set to the value of Current Position plus dz, dy, and dz in three-

dimensional world coordinates, move_rel_3 only sets the Current Position; no drawing com-
mands are output.

5.2. Position Enquiry Functions

The position enquiry functions return the coordinates of the Current Position to the caller.

5.2.1. inquire_current_position_2 — Enquire 2D Position

inquire_current_position_2 returns the two-dimensional world coordinates of the
Current Position to the caller.

inquire_current_positici_2(x, ¥y)
flocat *x, *y;

5.2.2. inquire_current_position_3 — FEnqusre 3D Posslion

inquire_current_position_3 returns the three-dimensional world coordinates of the
Current Position to the caller.

inquire_current_position_3(x, y, z)
float *x, *y, *z;

5.3. Line Routines

The line routines draw lines on the currently selected SunCore view surfaces. Attributes of the
line can be specified with additional calls to primitive attribute setting routines.

The primitive attributes of line indez, linestyle, linewidth, and pick_¢d are applicable for lines.
Error Codes from the Line Functions:

e There is no open segment.

5.8.1. line_abs_2 — Describe Line tn Absolute §D Coordinates

line_abs_2 describes a line in two-dimensional world cgerdinates.

Revision F of 15 May 1985 5-5

Qutput Primitives SunCore Reference Manual

line_abs_2(x, Y)
float x, y:

The line that 1ine_abs_2 describes extends from the Current Position to the position specified
by the z and y coordinates.

The Current Position is updated to the coordinates specified by z and .

5.8.2. 1line_abs_3 — Describe Line in Absolute 3D Coordinates

line_abs_3 describes a line in three-dimensional world coordinates.
line_abs_3(x, Y. Z)
flocat X, ¥. 2Z;

The line that 1ine_abs_3 describes extends from the Current Position to the position specified
by the z, y, and 2z coordinates.

The Current Position is updated to the coordinates specified by z, y, and =

588 line_rel_2 — Describe Line in Relative 2D Coordinates

line_rel_2 describes a line in two-dimensional world coordinates.
line_rel_2(dx, dy)
float dx, dy;

The line that 1ine_rel_2 describes extends from the Current Position to the position specified
by the Current Position plus the dz and dy coordinates.

The Current Position is updated by the deltas specified by dz and dy.

5.8.4. line_rel_3 — Describe Line in Relative 3D Coordinates

line_rel_3 describes a line in three-dimensional world coordinates.

line_rel_3(dx, dy., dz)
float dx, dy, dz;

The line that 1ine_rel_3 describes extends from the Current Position to the position specified
by the Current Position plus the dz, dy, and dz coordinates.

The Current Position is updated by the deltas specified by dz, dy, and d=.

5.4. Polyline Routines

The polyline functions describe connected sequences of lines. The first two or three arguments
to a polyline function are arrays of the appropriate coordinates. Consider the polyline function:

5-6 Revision F of 15 May 1985

SunCore Reference Manual Output Primitives

polyline_abs_3(x_array, y-array, Z_array, n)
float x_array[], y_array[]., z_array[]: /* x, y, and z arrays *f
int n; /* Number of coordinates */

The sequence of lines that these arrays of coordinates describe starts at the current position,
then draws to: (z_arrayl0], y_array(0], z_array[0]), then runs through the intermediate array
values and ends at (z_array[n—1|, y_array[n—1], z_array[n—1]), where n is the number of ele-
ments in each of the coordinate arrays. There are thus n lines in the figure described.

Error Codes from the Polyline Functions:
e The number of coordinates, s, is less than or equal to zero.

e There is no open segment.

5.4.1. polyline_abs_2 — Describe Line Sequence in Absolute 2D Coordinates

polyline_abs_2 describes a line sequence in absolute two-dimensional world coordinates.

polyline_abs_2(x_array, y_array, n)
float x_array[}., y_array[]: /* x and y coordinates */
int n; /* number of array elements */

The Current Position is updated to the end of the last line drawn.

5.4.2. polyline_abs_3 — Describe Line Sequence in Absolute 3D Coordinates

polyline_abs_3 describes a line sequence in absclute three-dimensional world coordinates.

polyline_abs_3(x_array, y_array, z_array, n)
float x_array[], y_array[]. z_array[]; /* x., Y. and z arrays */
int n; /* number of elements */

The Current Position is updated to the end of the last line drawn.

5.4.8. polyline_rel_2 — Describe Line Sequence in Relative 2D Coordinates

polyline_rel_2 describes a line sequence in relative two-dimensional world coordinates.

polyline_rel_2(dx_array, dy_array, n)
float dx_array(], dy_array[]: /* x and y delta arrays */
int n; /* number of array elements */

The sequence of lines that this function describe starts at the current position, moves to: current
position + (dz_array[0], dy_array(0]) then draws to: current position + (dz_array(0],
dy_array|0)) + (dz_array[l], dy_asrray(1]) and so on. The Current Position is updated to the end
of the last line drawn.

Revision F of 15 May 1985 5-7

Output Primitives SunCore Reference Manual

5.4.4. polyline_rel_3 — Describe Line Sequence in Relative 3D Coordinates
polyline_rel_3 describes a line sequence in relative three-dimensional world coordinates.

polyline_rel_3(dx_array, dy_array, dz_array, n)

float dx_array([]. dy_array[], dz_array[]:; /* x, y. and z delta arrays

int n; /* number of elements */

The sequence of lines that this function describe starts at the current position, moves to: current
position + (dz_array{0), dy_array[0), dz_array[0]) then draws to: current position +
(dz_array(0], dy_erray(0], dz_array[0]) +

(dz_array(l|, dy_array(l], dz_array(l]) and so on. The Current Position is
updated to the end of the last line drawn.

5.5. Text Routines

5.5.1. text — Draw Character String In World Coordinates

tezt draws a character string in world coordinates.

text (string):
char *string;

The character string specified by string is drawn from the Current Position. The Current Posi-
tion is unchanged. The font, size, orientation, and so on, are set by calls to the set primitive
attribute functions.

Error Codes from the Text Function:
e There Is no open segment.
e The character string contains one or more characters which cannot be drawn.

e The vectors that the current charpath and charup attributes describe are parallel.

5.6. Text Enquiry Functions

Text enquiry functions obtain the length that a character string would extend, in world coordi-
nates, if the character string were actually drawn according to the current text primitive attri-
butes.

Error Codes from the Text Enquiry Functions:

¢ inquire_text_extent_2 was used to obtain the Current Position when
inquire_text_extent_3 should have been used in order to avoid loss of information.

e The character string contains one or more characters which cannot be drawn.

e The vectors that the current charpath and charup attributes describe are parallel,

5-8 Revision F of 15 May 1985

G

*/

SunCore Reference Manual Output Primitives

5.6.1. inquire_text_extent_2

inquire_text_extent_2 obtains the two-dimensional extent, in world coordinates, of the
specified character string.

jnquire_text_extent_2(string, dx, dy)
char *string;
float *dx, *dy:

inquire_text_extent_2 returns the extent of the character string specified by sfring, if the
character string were drawn, unjustified, from the Current Position. The extent is returned in
dz and dy in world coordinates relative to the Current Position.

The specified character string, and the values of the primitive attributes font, charup, charsize,
charpath, charspace, and charprecision are used to calculate the vector which represents the
extent of the character string.

In the current implementation of SunCore, this function only returns meaningful values if char-
precision is CHARACTER.

5.6.2. inquire_text_extent_3

inquire_text_extent_3 obtains the three-dimensional extent, in world coordinates, of the
specified character string,.

inquire_text_extent_3(string, dx, dy, dz)
char *string:;
float *dx, *dy, *dz:;

inquire_text_extent_3 returns the extent of the character string specified by string, if the
character string were drawn, unjustified, from the Current Position. The extent is returned in
dz, dy, and dz in world coordinates relative to the Current Position.

The specified character string, and the values of the primitive attributes font, charup, charsize,
charpath, charspace, and charprecision are used to calculate the vector which represents the
extent of the character string.

In the current implementation of SunCore, this function only returns meaningful values if char-
precision is CHARACTER.

5.7. Marker Functions

The marker functions place a character at a specific location on the display. The polymarker
functions place a character at a sequence of locations on the display.

The marker character is any printable ASCII character, and is the value of the marker_symbol
primitive attribute. The marker_symbol primitive attribute is set by the
set_marker_symbol function described in chapter 6.

The markers are placed on the display without any of the rotations, translations, or scaling
which is applied to text strings. Markers use the default orientation attributes.

Revision F of 15 May 1985 5-9

Output Primitives SunCore Reference Manual

Error Codes from the Marker Functions:
e There is no open segment. Q

5.7.1. marker_abs_2 — Plot Marker at Absolute 2D Coordinates
marker_abs_2 plots a marker at specified absolute two-dimensional world coordinates.

marker_abs_2(x, y)
fleat x, y: /* Absolute x and y Coordinates */

marker_abs_2 plots the marker at the absolute two-dimensional coordinates specified by the z
and y arguments. The Current Position is updated to be this point.

5.7.2. marker_abs_3 — Plot Marker at Absolute 3D Coordinates

marker_abs_3 plots a marker at specified absolute three-dimensional world coordinates.

marker_abs_3(x, y, z)
float x, Yy, z; /* Absolute x, y, and z Coordinates *t/

marker_abs_3 plots the marker at the absolute three-dimensional coordinates specified by the

z, y, and z arguments. The Current Position is updated to be this point.

5.7.8. marker_rel_2 — Plot Marker at Relative 2D Coordinates ©

marker_rel_2 plots a marker at a specified relative two-dimensional position.

marker_rel_2(dx, dy)
float dx, dy: /* x and y Coordinate Deltas */

marker_rel_2 plots the marker at the position relative to the Current Position, specified by
the deltas dz and dy. The Current Position is updated to be this point.

5.7.4. marker_rel_3 - Plot Marker at Relative 3D Coordinates

marker_rel_3 plots a marker at a specified relative three-dimensional position.

marker_rel_3(dx, dy, dz)
float dx, dy, d=z; /* x, y, and z Coordinate Deltas */

marker_rel_3 plots the marker at the position relative to the Current Position, specified by
the deltas dz, dy, and dz. The Current Position is updated to be this point.

5-10 Revision F of 15 May 1985

SunCore Reference Manual Output Primitives

5.7.5. polymarker_abs_2 — Plot Marker Sequence at Absolute 2D Coordinates

polymarker_abs_2 plots a sequence of markers at specified absolute two-dimensional posi-
tions.

pelymarker_abs_ 2 {x_array, y_array, n}
float x_array[]., y_array[]: /* Absolute x and y */
int n; /* Number of Coordinates */

polymarker_abs_2 plots a sequence of markers at the absolute positions specified by the
z_array and y_array arguments. n specifies the number of coordinates in the arrays. The
Current Position is updated to be the last point.

5.7.6. polymarker_abs_3 — Plot Marker Sequence at Absolute 3D Coordinates

polymarker_abs_3 plots a sequence of markers at specified absolute three-dimensional posi-
tions.

polymarker_abs_3(x_array, y_array, z_array, n)
float x_array[]. y_array[]. z_array[]; /* Absolute x, y, and z */
int n; /* Number of Coordinates */

polymarker_abs_3 plots a sequence of markers at the absolute positions specified by the
z_array, y_array, and z_array arguments. The number of coordinates in the array is given by
the n argument. The Current Position is updated to be the last point.

5.7.7. polymarker_rel_2 — Plot Marker Sequence at Relalive 2D Coordinates

polymarker_rel_2 plots a sequence of markers at specified relative two-dimensional positions.

polymarker_rel_2(dx_array, dy_array, n)
float dx_array[], dy_array[]: /* x and y Deltas */
int n; /* Number of Coordinates */

polymarker_rel_2 plots a sequence of markers at the positions relative to the Current Posi-
tion, specified by the deltas dz_array and dy_erray. The number of deltas in the arrays is
specified by n. The Current Position is updated to be the last point.

5.7.8. polymarker_rel_3 — Plot Marker Sequence at Relative 3D Coordinates

polymarker_rel_3 plots a sequence of markers at specified relative three-dimensional posi-
tions.

pelymarker_rel_3{dx_array, dy_array, dz_array, n)
float dx_array[]. dy_array[], dz_array([]: /* x, y, and z Deltas */
int n; /* Number of Coordinates */

polymarker_rel_3 plots a sequence of markers at the positions relative to the Current Posi-
tion, specified by the deltas dz_array, dy_array, and dz_array. The number of deltas in the

Revision F of 15 May 1985 5-11

Output Primitives SunCore Reference Manual

arrays is specified by n. The Current Position is updated to be the last point.

5.8. Three-Dimensional Polygon Shading Parameters (SunCore
Extension)

When drawing three-dimensional polygons on the Sun color displays, several shading options are

available. The routines described in this section provide shading control. These shading param-

eters may be changed at any time and are not stored in the display list. Therefore a segment
may be drawn with fast shading at one time, and then drawn again later with smooth shading.

5.8.1. set_shading_parameters

set_shading_parameters specifies the parameters for rendering three-dimensional polygons
on the color display.

set_shading_parameters (ambient, diffuse, specular, flood, bump, hue, style)

float ambient; /* percent background light */

float diffuse; /* percent diffuse reflection %/

float specular; /* percent specular reflection #*/

float flood; /* percent flood lighting */

float bump; /* specular power 2 ., 9 %/

int hue; /* color index range to generate */
/J* 0=1..255, 1=1..63 */
/* 2 =64 .. 127, 3 =128 .. 191 */
/* 4 =192 .. 255 */

int style; /* Type of surface shading to do */
/* CONSTANT, GOURAUD, PHONG */

See set_polygon_interior_style for the ways in which these shading parameters are
used. CONSTANT style shading gives constant intensity over the polygon using the color set by
set_fill_index. GOURAUD style shading linearly interpolates between vertices (use only con-
vex polygons) where the intensity at each vertex is set by the set_vertex_indices function,
PHONG style shading produces smooth shading using the other parameters (only with convex

polygons).
The shading equation with PHONG is:

pizelshade =ambient +diffuse{L oN)+specular(HoN)" —(flood*z)

where L is the direction vector of the light source, N is the surface normal vector, H is a vector
which is the average of L and E (the eye direction vector), and z is depth in NDC,

Here are some useful sets of PHONG parameters:

5-12 Revision F of 15 May 1985

SunCore Reference Manual Output Primitives

Table 5-2: Useful PHONG Parameters

ambient 0.05 0.05
diffuse 0.94 0.74
specular 0.0 0.20
flood 0.0 0.0
bump 0.0 7.0
hue 0 0

style PHONG PHONG

5.8.2. set_light_direction — Specify Direction of Light Source

set_light_direction specifies the direction of the light source from the object.

set_light_directien(dx, dy, dz)
float dx, dy, dz;

This assumes normalized device coordinate space where the direction from object to viewer is
always (0.0, 0.0, —1.0). Hence, to place the light source at the viewer, the light direction is
(0.0, 0.0, —1.0). The light direction vector is only used if the shading style is GOURAUD or
PHONG. A useful light direction is (—0.2, 0.2, —1.0).

5.8.8. set_vertex_normals

set_vertex_normals sets the surface normal vectors for each vertex of the subsequent
three-dimensional polygon primitives (polygonabs_3 or polygonrel_3). These normals are
used for PHONG style shading. For GOURAUD style shading, use set_vertex_indices.

set_vertex_normals(xlist, ylist, zlist, n)
float xlist[], ylist[]), =zlist[];

int n;

The number of elements in the list, n, must be equal to the number of vertices in the subsequent
call to polygonzzz_3.

5.8.4. set_vertex_indices

set_vertex_indices specifies a color index for each vertex of the next polygonzzz_3

primitive. GOURAUD shading linearly interpolates these color indices for smooth shading in the
interior of the polygon.

Revision F of 15 May 1985 5-13

Qutput Primitives SunCore Reference Manual

set_vertex_indices {color_index_list, n)
int color_index_1ist[]:
int n:

The number of elements in the list, n, must be equal to the number of vertices in the subsequent
call to polygonxxx_3.

5.8.5. set_zbuffer_cut

set_zbuffer_cut specifies a cutaway view of 3-D polygon objects when hidden surfaces are
being removed. set_zbuffer_cut specifies an array of depths in Normalized Device Coordi-
nate space. Any parts of objects which are closer to the viewer than this piecewise-linear func-
tion are clipped away.

set_zbuffer_cut (surface_name, xlist, zlist, n)

struct vwsurf *surface_name; /* See appendix B */
float xlist[], zlist{]:
int n;

zlist is assumed to be monotonically increasing. This function specifies a piecewise-linear cuta-
way threshold in the z coordinate, which, given any x coordinate, is constant in y. The default
cutaway depth is O for all values of x. Values of x less than zlist[0] or greater than zlist{n - 1]
will have the default depth. The view surface must have been initialized with the hidden flag
on.

5.9. Polygon Functions (SunCore Extension)

The polygor functions are 2 SunCore extension to the ACM Core specification. The polygon
functions deseribe conmected sequences of lines which form closed figures. The polygons are
filled in with color as specified by the set_fill_index primitive attribute, or are shaded
according to the current shading parameters, depending on the polygoninterior_style
primitive attribute. Only polygons created by the three-dimensional polygon functions may be
shaded.

The first two or three arguments to a polygon function are arrays of the appropriate coordinates.
Consider the polygon function:

polygon_abs_3 (x_array, y_array, z_array, n)
float x_array[], y-array(]. z_array[}: /* x, y, and z coordinates
int n; /* Number of coordinates */

The bounding sequence of edges that these arrays of coordinates describe pass from the first
point (z_array[0], y_array[0}, z_array[0]), then runs through the intermediate array values to
(z_array[n—1), y_array[n—1], z_array[n—1]), and then back to the first point. n is the number
of elements in each of the coordinate arrays. There are thus n sides in the figure described.

Note that the polygon functions describe a closed figure. The last coordinate in the array of
points is connected to the first point.

Error Codes from the Polygon Functions:

5-14 Revision F of 15 May 1985

*/

SunCore Reference Manual Output Primitives

e The number of coordinates, s, is less than or equal to two.

e There is no open segment.

5.9.1. polygon_abs_2 — Describe Polygon in Absolute 2D Coordinates
polygonabs_2 describes a polygon in absolute two-dimensional world coordinates.

polygon_abs_2(x_array, y-array, n)
float x_array[]. y-array[];’ /* x and y coordinates */
int n; /* number of array elements */

The Current Position is set to the first point.

5.9.2. polygon_abs_3 — Describe Polygon in Absolute 3D Coordinales

polygonabs_3 describes a polygon in absolute three-dimensional world coordinates.

polygon_abs_3(x_array, y_array, z_array, n)
float x_array[]., y_array[], z_array[]: /* x, y, and z coordinates
int n; /* number of array elements */

The Current Position is set to the first point.

5.9.8. polygon_rel_2 — Describe Polygon in Relative 2D Coordinates

polygonrel_2 describes a polygon in relative two-dimensional world coordinates. The first
array value specifies a displacement from the Current Position; remaining array values specify
displacements from the preceding point.

polygon_rel_2(dx_array, dy_array, n)
float dx_array[]. dy_array[]: /* x and y deltas */
int n; /* number of array elements */

The Current Position is set to the first point.

5.9.4. polygon_rel_3 — Describe Polygon tn Relative 3D Coordinates

polygonrel_3 describes a polygon in relative three-dimensional world coordinates. The first
array value specifies a displacement from the Current Position; remaining array values specify
displacements from the preceding point.

pelygon_rel_3(dx_array, dy_array, dz_array, n)
float dx_array[]. dy._array[]. dz_array[]: /* x, y. and z deltas */
int n; /* number of array elements */

The Current Position is set to the first point.

Revision F of 15 May 1985 5-15

Output Primitives SunCore Reference Manual

5.10. Raster Primitive Functions (SunCore Extension)

5.10.1. put_raster — Raster Quiput Primitive

put_raster draws a rectangular 1-bit or 8-bit deep raster and enters it into the current seg-
ment. The raster may not be used in transformable segments, because rasters cannot be scaled
or rotated in the current release of SunCore. A raster primitive may, however, be picked or
dragged if it is entered in a translatable segment. The Current Position is at the lower left-hand
corner of the raster.

Note that put_raster is device dependent in that it is written to the right and upward from
the Current Position a specified number of PIXELS in height and width. The Current Position is
unchanged.

put_raster (raster)
struct {
int width, height, depth;
short *bits;
} t*raster;
The depth parameter can be 1 or 8 bits per pixel.

The bits of the raster are stored in the following order fordepth = 1: The first word is the upper
left 16 horizontal bits, with the high order bit being the leftmost bit. The first (width+15)/16
words comprise the top row of the rectangle. The number of words of storage that bits points to

150

((width+15) / 16) * height
for depth = 1.

Rasters of depth = 8 are stored as successive bytes in row order. The number of bytes that bits
points to is:

width * height
for depth = 8.

If 2 1-bit deep raster is written to a color view surface, ‘0’ bits select the background color and
‘1’ bits select the color specified by the fill indez primitive attribute.

Note that output clipping is always done on raster primitives.

5.10.2. get_raster — Read Raster from Black/ White or Color F rame Buffer

get_raster reads a specified region of the black and white or color frame buffer into a storage
area.

5-16 Revision F of 15 May 1985

SunCore Reference Manual Output Primitives

get_raster (surface_name, xmin, xmax, ymin, ymax, x, y, raster)
O struct vwsurf #*surface_name; /* See appendix B */
float xmin, ymin, xmax, ymax; /* Region of NDC space to get +/
int x, y; /* starting point pixel offsets in raster relative top left #*/
struct {

* int width, height, depth:
short *bits; ‘
} ‘*raster; /* Returned Raster */

get_raster requires an area of memory large enough to hold the raster region that it returns.
It is the user’s responsibility to allocate this storage area before calling get_raster. The
size_raster and allocate_raster functions may be used to do this:

size_raster (surface_name, xmin, xmax, ymin, ymax, &raster);
allcocate_raster (&raster) ;
if (raster.bits == NULL})
error cage — the raster could not be sllocated
else
continue with the processing

To free the area when finished with the raster, call the free_raster function:

free_raster (&raster);

Hence, a large raster may be allocated and then portions of it filled with data using
get_raster with various z, y offsets, in pixel coordinates from the top left hand corner of the

: ') raster.

5.10.8. size_raster — Set Size of Raster in NDC

size_raster returns the raster with the pixel coordinates width, height, and depth, for a
specified region of Normalized Device Coordinate space and a specified view surface.

size_raster (surface_name, xmin, xmax, ymin, ymax, raster)
struct vwsurf *surface_name;
float xmin, xmax, ymin, ymax;
struct { '
int width, height, depth;
short #tbits;
} ‘*raster;

On return, raster.bits is set to NULL.

5.10.4. allocate_raster — Allocate Space for a Raster
Given a raster whose width, height, and depth fields were filled by the size_raster function

(described above), allocate_raster allocates the memory required for that raster and sets
the raster.bits pointer.

Revision F of 15 May 1985 5-17

Output! Primitives SunCore Reference Manual

allocate_raster (raster)
struct {
int width, height, depth;
short *bits;
} traster;

allocate_raster returns a NULL pointer value in raster.bifs if it is unable to obtain enough
memory for the raster structure.

5.10.5. free_raster — Free Space of a Raster
free_raster frees the memory used by a specified raster, if raster.bits is not NULL.

free_raster (raster)
struct {
int width, height, depth;
short *blits;
} ‘*raster;

5.10.6. raster_to_file — Copy a Raster to a Disk Raster File

raster_to_file copies a raster to a disk file in Sun’s standard raster file format.

raster_to_flle(raster, map, fd, replicate)

struct {
int ' width, height, depth:;
short *hits;

} ‘*raster;

struct {
int type: /* 1 for RGB coler table */
int nbytes; /* 3 times number of color table elements */
char *data; /* ptr to nbytes/3 red, blue, and green bytes */

} *map;
int f£d; /* standard UNIX file descriptor for C programs */
: /* FORTRAN logical unit number for FORTRAN programs
/* Pascal file variable for Pascal programs */
int replicate; /* magnification factor */

If map.nbytes = 0, no color map data will be written. This would normally be the case for ras-
ters copied from the bitmap display.

The replicate parameter specifies whether the raster should be magnified on transmission to the
file. The raster is transmitted without magnification if replicate = 1, and is transmitted with
pixel-replication zoom for a factor of 2 magnification if replicate = 2.

The format of the generated disk file can be found in the include file in
[usr/include/rasterfile.h. Disk raster files can be printed on a Versatec_like ploter device by
using the Ipr(1) command with the —v option.

5-18 Revision F of 15 May 1985

*/

SunCore Reference Manual Qutput Primitives

5.10.7. file_to_raster — Getl a Raster from a Disk File

file_to_raster allocates enough memory for a raster stored on a disk file, then fills in all
fields of the raster and map structures.

file_to_raster (fd, raster, map)
int f£d4; /* standard UNIX file descriptor for C programs */
/* Fortran logical unit number for Fortran programs */
/* Pascal file variable for Pascal programs #/
struct {
int width, height, depth;
short *bits;
} ‘traster;
struct {
int type; /* 1 for RGB color table */
int nbytes; /* 3 times number of color table elements */
char *data; /* ptr to nbytes/3 red, blue, and green bytes */
} *map;

Note that this function frees map.data, unless data is NULL, and allocates map.data each time
it is called — therefore map.data is only valid in the last call to this function. The raster.bits
field is set to NULL if there is not enough room to allocate the raster.

The format of the disk file can be found in the include file in /usr/include/rasterfile.h.

Revision F of 15 May 1985 5-19

Chapter 6

Attributes

Attributes in SunCore specify general characteristics for segments and for output primitives.

There are two major divisions of attributes. One set of attributes is called segment attributes
and applies only to retained segments. The other set is called primitive attributes and applies
only to output primitives. There are no attributes which apply to both retained segments and to
output primitives.

Attributes are further subdivided into static and dynamic. Static attributes specify characteris-
tics of retained segments or output primitives which apply for the entire lifetime of those
objects. Dynamic attributes specify characteristics of segments which can change during the life-
time of those segments. Static primitive attributes are stored in the display list so that subse-
quent manipulation of a segment is performed with the appropriate attributes.

6.1. Primitive Static Attributes

The list below defines the primitive static attribute values.

line indez
is an index into three float arrays which determine the red, green, and blue components
of the color displayed for line and polyline output primitives. Index value 0 corresponds to
the' background color. For lines and polylines on monochrome displays, a non-zero line tndez
gives black lines on a white background. SunCore initializes line indez to 1. The range of
possible values is 0 to 255,

fill index
is an index into three float arrays which determine the red, green, and blue components
of the color displayed for polygon and raster output primitives. Index value 0 corresponds to
the background color. For monochrome displays, the values form a set of definitions for tex-
ture, described later. SunCore initializes fill indez to 1. The range of possible values is 0 to
255,

tezt indez
is an index into three float arrays which determine the red, green, and blue components
of the color displayed for markers and text. Index value 0 corresponds to the background
color. For text and markers on monochrome displays, a non-zero tezt indez gives black on a
white background. SunCore initializes tezt éndez to 1. The range of possible values's 0 to
255,

Revision F of 15 May 1985 6-1

Attributes

linestyle

SunCore Reference Manuzal

is an int value which controls the appearance of lines drawn. Linestyle can assume the

values:

SOLID

Solid lines,

DOTTED Dotted lines,

DASHED Dashed lines,

DOTDASHED

Dotdashed lines.

The definitions of these constants can be found in usercore.h. SunCore sets linestyle to
SOLID a4 initialization time.

polygon intersor atyle

is an_int value which controls the interior filling style for polygons. polygon interior
style can have the values:

PLAIN Solid color polygon

SHADED Shading style is set dynamically by set_shading_parameters. Only
3-D polygons may be shaded.

SunCore sets polygon interior style to PLAIN at initialization time.

polygon edge style

Iinewsdth

pen

font

charsize

charup

6-2

is not implemented in the current release of SunCore.

is a float value which describes, in world coordinates, the width of drawn lines.
SunCore sets linewidth to 0.0 (the minimum) at initialization time.

is an int value which is passed to the device driver to select a particular device
dependent pen. SunCore initializes pen to 0.

is an int value which determines the character font in which text will be written.
Font can assume the following values (for charprecision=CHARACTERY):

ROMAN If charprecision=STRING, this gives a large raster font.

GREEK If charprecision=STRING, this gives the default raster font.

SCRIPT If charprecision=STRING, this gives a small raster font.

OLDENGLISH If charprecision=STRING, this is equivalent to a bold version of GREEK.

STICK If charprecision=STRING, this is equivalent to a medinm sized ROMAN
raster font.

SYMBOLS Currently holds some electronics symbols (character values 32 through
47). If charprecision=STRING, this is equivalent to a bold version of
STICK.

SunCore sets font to STICK at initialization time.

is a pair of float values which determine the size of characters, in world coordi-
nates. SunCore sets the default character width to 11.0 and the default character
height to 11.0 at initialization time.

attribute consists of three float values which represent a vector giving the direc-
tion of ‘up’ for characters:

Revision F of 15 May 1985

SunCore Reference Manual Attributes

(dz_charup, dy_charup, dz_charup)
in world coordinates. Usually, charup is normal to charpath. SunCore establishes the default
as a vector in the positive y direction (0.0, 1.0, 0.0) at initialization time.
charpath

consists of three float values which represent a vector:

(ds_charpath, dy_charpath, dz_charpath)
that determines the direction, in world coordinates, in which character strings will extend. Sun-
Core sets the charpath attribute to (1.0, 0.0, 0.0) at initialization time.

charspace
is a single float value specifying the space, in world coordinates, which should be inserted
between characters in a text string. SunCore establishes charspace with the value 0.0 at
initialization time.

charjuat
is not implemented in the current release of SunCore.

charprecision
is an int value which controls the quality of the text drawing operation. Charprecision can
have the values:

STRING Fast raster fonts, fixed size, and fixed orientation.
CHARACTER Hershey vector fonts.

marker_symbol
determines the character which is plotted on the displays by the marker and polymarker
functions described in the chapter on Output Primitives. Any printable ASCH character can
be used as the marker character.

Note: The ACM Core specifies that the integer values 1 through 5 represent specific charae-
ters. SunCore does not implement this feature,

pick_td
is an int value identifying the next output primitive. The input primitives use this number
for user interaction with segments and primitives within segments.

raaslerop
specifies the rasterop used when writing to the display. It can be one of:

NORMAL Source value is written to the display.

XORROP Source value is exclusive or’ed with the value already in the display before being
written to the display.

ORROP Source value is or’ed with the value already in the display before being written to
the display.

This attribute is ignored if set_drag was specified as TRUE.

The functions listed in the subsections below each set the specified attribute value for the indi-
cated primitive attribute.

Errors returned from the primitive attribute setting functions:

Revision F of 15 May 1985 6-3

Attributes

e One or more of the attribute values is incorrect.

SunCore Reference Manual

e No character orientation can be established because dz_charpath, dy_charpath, and

dz_charpath are all zero.

e No character up direction can be established because dz_charup, dy charup, and

dz_charup are all zero,

6.1.1. Using Tezture for Color Attributes on the Monochrome Display

When a monochrome display is used, the fill indez attribute is used to determine how a region of
the screen is textured when using the polygon output primitives. Texturing is done in terms of
16 X 16 pixel regions of the screen. There are 16 rows of 16 pixels each. The fill indez attribute
selects an entry from each of three arrays of float values in the range 0.0 through 1.0,
representing red, green, and blue. In the case of the monochrome display, each of these three
float numbers is converted to an integer between 0 and 255. Each of the 8bit numbers is
divided into two four-bit quantities, which we can call A and B.

Table 6-1: Structure of a Fill-Index Value

Red

B

Select | Select

A

Length

B

Green

Length

A

Rotate

B

Blue

Rotate

A

Select A and Select B are four-bit values which are used to select an A pattern and a B pattern
out of the table of numbers shown below.

6-4

Revision F of 15 May 1985

©

SunCore Reference Manual

Table 6-2: Texture Selection Values

Attributes

Four-Bit
Value

0

4

He;zctlf::;n . Binary Pattern
0000 0o 0 0 0 0 0 0 0 0 O
2000 1 0 0 06 0 0 0 0 0 ©
8030 1 0 o 0 ¢ O O O 1 O
8410 1 0 0 0 01 0 0 0 O
8888 1 o ¢ 0 1 0 0 O 1 O
9124 1 0 0 1 0 O 0 1 0 O
9494 1 o o &t 0 1 o0 ¢ 1 0
AS552 1 o 1 0 0 1 0 1 0 1

10

10

AAAA |t 0 1 0 1 o 1 0 1t 0O

12

13

14

15

EBSE 1 1.1 0 1 o0 1 1 0 1
DDDD i1 1 0 ¢t 1 1 0 1 1 1
| 3rf o 1 1.1 1 0 1 1 1 1 1
FFFF $r 1t 1 1 1 1 1 1 1 1
E3E3 1 11 0 0 0 1 1 1 1
FFo00 1 11 1 1 1 1 1 0 O
0OFF o 0 0 0 0 O O 0 1 1

6 0 0
0 0 O
0 0 O
0 0 0
o 0 0
1 0 0
1 0 0
0 1 0
0 1 0
1 1 0
1 0 1
1 1 1
1 1 1
o 1 1
0 0 0
1 1 1

The patterns are then laid down in the texture field, pixels, as described it the pseudo code

below.

Revision F of 15 May 1985

6-5

Attributes

let z = y = Pattern A

for index = O to LengthA - 1

pixels[index] = z |

if Rotate A & 1 then rotate
if Rotste A & 2 then rotate
if Rotate A & 4 then rotate
if Rotale A & 8 then rotate

let z = y = Paitern B

y

z one
z one
y one
y one

SunCore Reference Manual

bit right
bit left
bit right
bit left

for index = Length A to Length A+ Length B - 1

plixels[index] = z |
if Rotate B & 1 then
if Rotate B & 2 then
if Rotate B & 4 then
if Rotate B & 8 then

If the value of

length A + length B

¥
rotate
rotate
rotate
rotate

z one
Z one
y one
y one

bit right
bit left
bit right
bit left

is less than 16, the processes described above are repeated as many times as required to fill the

16 line region.

The above encoding provides for an enormous number of textures. Here are a few of the useful

Ones.

Table 6-3; Useful Texture Selection Values

Red Green Blue Resultant
Value Value Value Tezture
0.1334 0.5020 0.83529 | Hatched Left
0.1334 0.5020 0.6471 | Hatched Right
0.4667 0.5334 0.2118 | Wallpaper
0.0000 0.2667 0.3882 | Black
0.8001 0.2667 0.4001 | White
0.1334 0.3334 0.4001 [Wavy Lines
0.5334 0.5334 0.4001 | Grey Tone
0.1334 0.5334 0.4001 | Cross Hatched

6.1.2. define_color_indices — Assign Colors to Indices

define_color_indices defines entries in the color lookup table of a view surface.

6-6

Revision F of 15 May 1985

-

SunCore Reference Manual . Attributes

define_color_indices (surface_name, 11, 12, red_array, green_array, blue_array)
struct wvwsurf *surface_name; /* See appendix B */
int 411, 12; /* indices range from O through 255 */
float red_array[]. green_array[], blue_array[]:

The three arrays provide the values for red, green, and blue respectively. The value of each ele-
ment in the color arrays is in the range 0.0 through 1.0. The function defines all the indices in
the color index table between ¢I and {2 inclusive, using the first i2— i1+ 1 elements from each of
the three arrays.

Subsequent calls to the set_zzz_index function selects a color from the lookup table to use as
a color attribute.

Location 0 in the color tables is the background color for the view surface. For the monochrome
displays, lines, text, and markers are drawn black for any color index other than 0.

SunCore initializes the lookup table for monochrome view surfaces such that for the ith entry,
red{s] =, green[i] = 255—i, and blue[s]=4. SunCore initializes color view surfaces which have a
full 256-element lookup table such that entry O is gray, entry 1 is black, entries 2 through 63
contain an intensity ramp in red, entries 64 through 127 contain an intensity ramp in green,
entries 128 through 191 contain an intensity ramp in blue, and entries 192 through 255 contain
an intensity ramp in yellow (red+green). See appendix B for details of color view surfaces with
fewer than 256 entries in the lookup table.

6.1.3. set_line_index — Select a Line Color Altribute

set_line_index selects a color by providing an index into the tables defined by the
define_color_indices function. This color attribute is applied to subsequent line and polyline out-
put primitives.

set_line_index (index)
int index: /¥ range O through 255 */

6.1.4. set_fill_index — Select a Polygon and Raster Color

set_fill_index selects a color by providing an index into the tables defined by the
define_color_indices function. This color attribute is applied to subsequent polygon and raster
output primitives.

set_£f111_ index(index)
int index; /* range O through 255 */

Revision F of 15 May 1985 6-7

Attributes SunCore Reference Manual

6.1.5. set_text_index — Select a Text and Marker Color

set_text_index selects a color by providing an index into the tables defined by the
define_color_gndices function. This color attribute is applied to subsequent text and marker out-
put primitives.

set_text_index (index)
int index; /* range O through 255 */

6.1.6. set_linewidth
set_linewidth specifies the linewidth attribute for the output primitives.

set_linewidth(linewidth)
flocat 1linewidth; /* unit of width is 1 percent of NDC space */

SunCore initializes linewidth to 0.0, which results in a one pixel wide line.

If XOR’ing is enabled (via the set_rasterop or set_drag functions), lines whose pixel
width is greater than one may partially overwrite themselves, resulting in poorly drawn wide
lines. Redrawing the lines with XOR'ing off will draw the lines correctly (until this problem is
fixed).

6.1.7. set_linestyle

set_linestyle specifies the linestyle attribute for output primitives.

set_linestyle(linestyle)
int 1linestyle; /* soLID, DOTTED, */
/* DASHED, DOTDASHED */

SunCore initializes linestyle to SOLID.

6.1.8. set_polygon_interior_style — Select Plain or Shaded Polygons

set_polygon_interior_style specifies the method of filling for polygons.

set_polygon_interior_style(style)
int style; /* PLAIN, SHADED */

If the filling method is SHADED, polygons are shaded according to the parameters set by the
set_shading_parameters function. Only 3-D polygons may be shaded.

6-8 Revision F of 15 May 1985

SunCore Reference Manual Attributes

6.1.9. set_polygon_edge_style (No Effect)
set_polygon_edge_style specifies the method of drawing the edges of a polygon.

set_polygon_edge_style(style)
int style; /* soLID, INTERICR */

This function has no effect in the current release of SunCore.

6.1.10. set_font
set_font specifies the font attribute for the output primitives.

set_font (font)
int font; /* ROMAN, CREEX, SCRIPT */
/* OLDENGLISH, STICX, SYMBOLS */

SunCore initializes font to STICK. If the charprecision attribute is set to STRING, ROMAN gives
a small Roman font, GREEK gives a stick figure font, SCRIPT gives a tiny stick figure font, OLDEN-
GLISH gives a bold version of GREEK, STICK gives 2 medium sized ROMAN raster font, and SYM-
BOLS gives a bold version of STICK. The STRING precision fonts are ‘raster’ fonts and are not
scalable or rotatable, hence they are in pixel coordinates and are larger on the color surface than
on the monochrome bitmap display.

6.1.11. set_pen — Select a Device Dependent Pen

This function has no effect on the standard SunCore view surfaces.

set_pen (pen)
int pen;

6.1.12. set_charsize

set_charsize specifies the charsize attribute for the text output primitive, in world coordi-
nates.

set_charsize (charwldth, charheight)
float charwidth, charheight;

If the charprecision attribute is set to STRING, set_charsize has no effect, except to control
the target extent of the text for the await_pick function. If the charprecision attribute is set to
CHARACTER, set_charsize sets the average size of a character, given that each character has
its own size.

Revision F of 15 May 1985 6-9

Attributes SunCore Reference Manual

6.1.13. set_charspace — Define Character Spacing for Output Primitives

set_charspace specifies the space attribute for the text output primitive, in world coordi-
nates. It is used to insert additional space between characters in text strings.

set_charspace (charspace)
flecat charspace;

If the charprecision attribute is set to STRING, set_charspace has no effect.

6.1.14. set_charup_2

set_charup_2 specifies the charup attribute for the text output primitive, iz world coordi-
nates.

set_charup_2(dx, dy)
float dx, dy;

Note that the dz offset is set to 0.0 for this function. If the charprecision attribute is set to
STRING, set_charup_2 has no effect; otherwise it specifies the upward direction for the char-
acters. This provides for slanting, mirror imaging, and so on, for characters.

6.1.15. set_charup_3

set_charup_3 specifies the charup attribute for the text output primitive, in world coordi-
nates.

set_charup_3(dx, dy, dz)
float dx, dy, dz;

If the charprecision attribute is set to STRING, set_charup_3 has no effect; otherwise it
specifies the direction of upward for the characters. This provides for slanting, mirror imaging
and such, for characters.

6.1.16. set_charpath_2

set_charpath_2 specifies the charpath attribute for the text output primitive, in world coor-
dinates.

set_charpath_2 (dx, dy)
float dx, dy:

Note that the dz offset is set to 0.0 for this function. If the charprecision attribute is set to
STRING, set_charpath_2 has no effect; otherwise the character string is written in this direc-
tion.

6-10 : Revision F of 15 May 1985

SunCore Reference Manual . Attributes

6.1.17. set_charpath_3

set_charpath_3 specifies the charpath attribute for the text output primitive, in world coor-
dinates.

set_charpath_3(dx, dy, dz)
flecat dx, dy, dz;

If the charprecision attribute is set to STRING, set_charpath_3 has no effect; otherwise the
character string is written in this direction.

6.1.18. set_char just — Specify Text Justification (No Effect)
set_charjust specifies how text strings should be justified.

set_charjust (just)
int Jjust;

This function has no effect in the current release of SunCore.

6.1.19. set_charprecision

set_charprecision selects the method of drawing text.

set_charprecision{charprecision)
int charprecision; /% STRING, CHARACTER */

STRING Specifies characters of fixed size and orientation, which are drawn rapidly using
raster operations. This is the default.

CHARACTER Specifies Hershey vector fonts, which can be clipped and transformed.

6.1.20. set_marker_symbol

set_marker_symbol establishes the marker_symbol primitive attribute.

set_marker_symbol {marker)
int marker; /* Character to use as Marker — 32 .. 127 */

The character specified by the marker argument in the set_marker_symbol function call is
subsequently used as the marker character by the marker and polymarker functions.

Revision F of 15 May 1985 6-11

Attributes SunCore Reference Manual

6.1.21. set_pick_id

set_pick_id specifies the pick_id attribute for output primitives.

set_pick_id(pick_1d)
int pick.id;

The pick_id attribute is only used by the awast_pick input function. Subsequent output primi-
tives are identified by the specified pick_td when they are detected by the mouse pointing device,
via the awast_pick input function.

6.1.22. set_rasterop — Select Rasterop to Display Memory (SunCore Eztension)

set_rasterop selects Xor’ing or or’ing of primitives to display memory.
P

set_rasterop (rop)
int rop: /* XORROP, ORROP, NCRMAL */

6.1.23. set_primitive_attributes -- Specify All Primitive Allributes

set_primitive_attributes is a composite function which provides a means to set all the
primitive attributes in a single function call.

set_primitive_attributes (attributes)

struct {
int 1lineindx, fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth;
int pen, font;
float charwldth, charheight;
float charupx, charupy., charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality;
int nmarker, pickid, rasterop;

} *attributes; :

Note that the function eall:
'set_primitive_attributes (&PRIMATTS)

sets allithe primitive attributes to their default values. PRIMATTS is defined in usercore.h.

6-12 Revision F of 156 May 1985

SunCore Reference Manual Attributes

6.2. Inquiring Primitive Static Attribute Values

Errors returned from the primitive static attribute enquiry functions:

e A two dimensional inquiry function was used when a three dimensional inquiry function
should have been used to avoid loss of information.

6.2.1. inquire_color_indices

inquire_color_indices obtains the color lookup table for the specified view surface.

1nquire_oolor_1ndlces(sﬁrface_name, i1, i2, red_array, green_array, blue_array)

struct vwsurf *surface_name; /* See appendix B */
int i1, 12; /* Start and end table indices *%/
float red_arrayf]: /* Range of each element is 0.0 thru 1.0 %/

float green_array[]: /* Range of each element is 0.0 thru 1.0 */
fleat Dblue_array[]: /* Range of each element is ©.0 thru 1.0 #*/

aurface_name is the name of the view surface for which the color lookup tables should be
obtained,

inquire_color_indices takes entries from the color lookup tables, starting at index 1
(relative to zero) and ending at index §2. The color lookup tables for a given color are stored in

array[0] through array[if—il]

6.2.2. inquire_line_index

inquire_line_index obtains the current color index for coloring line and polyline output
primitives.

inquire_line_index {index)
int *index;

6.2.3. inquire_fill_index

inquire_fill_index obtains the current color index for coloring polygon and raster output
primitives.

inquire_fill_index (index)
int t*index;

Revision F of 15 May 1985 6-13

Attributes SunCore Reference Manual

6.2.4. inquire_text_index

inquire_text_index obtains the current color index for coloring marker and text output
primitives.

inquire_text_index (index)
int *index;

6.2.5. inquire_linewidth

inquire_linewidth obtains the linewidth attribute, in percent of normalized device coordi-
nate space, for the output primitives.

inquire_linewidth (linewidth) -
float *1linewidth;

6.2.6. inquire_linestyle
inquire_linestyle obtains the linestyle attribute for the output primitives.

inquire_linestyle(linestyle)
int *linestyle; /* sSOLID, DOTTED, */
/* DASHED, DOTDASHED */

6.2.7. inquire_polygon_interior_style — Obtain Polygon Shading Method
inquire_polygon_interior_style obtains the method of filling for polygons.

inquire_polygon_interior_style(style)
int “#*style; /* PLAIN, SHADED */

6.2.8. inquire_polygon_edge_style
inquire_polygon_edge_style obtains the current method of drawing polygon edges.

inquire_polygon_edge_style (style)
int *style; /* SOoLID, INTERIOR */

6-14 Revision F of 15 May 1985

SunCore Reference Manual Attributes
6.2.9. inquire_pen

inquire_pen (pen)
int *pen; /* Device dependent pen selector */

6.2.10. inquire_font
inquire_font obtains the font attribute for the text output primitive.

inquire_£font (font)
int *font; /* TROMAN, GREEK, SCRIPT, OLDENGLISH, */
/* sricx, syMBoLs */

6.2.11. inquire_charsize

inquire_charsize obtains the charsize attribute for the text output primitive.

inquire_charsize(charwidth, charheight)
fleat *charwidth, #*charheight;

6.2.12. inquire_charspace

inquire_charspace obtains the charspace attribute for the text output primitive.

inquire_charspace (charspace)
float *charspace;

6.2.18. inquire_charup_2
inquire_charup_2 obtains the charup attribute for the text output primitive.

inquire_charup_2(dx, dy)
float *dx, *dy:

6.2.14. inquire_charup_3
inquire_charup_3 obtains the charup attribute for the text output primitive.

inquire_charup_3(dx, dy, dz)
float *dx, *dy, *dz;

Revision F of 15 May 1985 6-15

Attributes SunCore Reference Manual

6.2.15. induire_charpath_z

inquire_charpath_2 obtains the charpath attribute for the text output primitive.

inquire_charpath_2(dx, dy)
float *dx, *dy:

6.2.16.. inquire_charpath_3

inquitre_charpath_3 obtains the charpath attribute for the text output primitive.

inquire_charpath_3(dx, dy. dz)
float *dx, *dy, *dz;

6.2.17. inquire_char just — Oblain Justification Attribute

inquire_char just cbtains the justification attribute for text strings.

inquire_charjust {just)
int *just;

6.2.18. inquire_rasterop — Obtain Current Rasterop (SunCore Extension)

inquire_rasterop determines the current setting of the rasterop attribute.

inquire_rasterop (rop)
int ‘*rop: /* XORROP, ORROF, NORMAL */

6.2.19. inquire_charprecision

inquire_charprecision obtains the charprecision attribute for the text output primitive.

inquire_charprecision{charprecisicn)
int ‘*charprecision; /* STRING, CHARACTER */

6.2.20. inquire_pick_id
inquire_pick_id obtains the pick_id attribute for output primitives.

inquire_pick_id(pick_id)
int ‘*plick_id;

6-16 Revision F of 15 May 1985

O

SunCore Reference Manual Attributes

6.2.21. inquire_marker_symbol
inquire_marker_symbol obtains thé current value of the marker symbol.

Anquire_marker_symbol (symbol)
int *symbol; J* 32 .. 127 %/

6.2.22. inquire_primitive_attributes — Obtasn All Primitive Altributes

inquire_primitive_attributes is a composite function which provides a means to obtain
all the primitive attributes in a single function call.

inquire_primitive_attributes (attributes)

struct {
int 1lineindx, fillindx, textindx;
int 1linestyl, polylinestyl, polyedgestyl;
flecat linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality;
int marker, pickid, rasterop;

} ‘*attributes;

6.3. Retained Segment Static Attributes

There is only one static attribute for segments. This is the image_transformation_type attribute.
This attribute can take on one of five values:

NONE Retained segment on which no translation, scaling, or rotation can be performed.

XLATE2 Translatable retained segment. The segment can be moved (translated) in two
dimensions {x and y of NDC space).

XFORM2 Fully transformable retained segment. The segment can be moved (tramslated),
rotated, and scaled (have its size changed) in two dimensions (x and y of NDC space).

XLATE3 Translatable retained segment. The segment can be moved (translated) in three
dimensions (x, y and z of NDC space).

XFORMS3 Fully transformable retained segment. The segment can be moved (translated),
rotated, and scaled (have its size changed) in three dimensions (x, y and z of NDC
space).

The smage_transformation_type attribute is set when a segment is created and cannot be
changed at any time during the life of the segment. The default value of
tmage_transformation_type is NONE.

Revision F of 15 May 1985 6-17

Attributes SunCore Reference Manual

The functions described below are used to set and enquire about the values of
image_transformation_type.

6.3.1. set_image_transformation_type

set_image_transformation_type specifies the image_transformation_iype attribute for
subsequently created segments.

set_image_transformation_type (type)
int type: /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 */

6.3.2. inquire_image_transformation_type

inquire_image_transformation_type obtains the current value of the
fmage_transformation_type attribute.

inquire_image_transformation_type (type}
int ‘*type: /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 */

6.3.3. inquire_segment_image_transformation_type

inquire_segment_image_transformation_type obtains the smage_transformation_type
for a specified segment.

inquire_segment_image_transformation_type (segment_name, type)
int segment_name; /* Name of segment for inquiry */
int ‘*type; /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 */

6.4. Setting Retained Segment Dynamic Attributes

In addition to the one static attribute described above, there are a number of dynamic attributes
which 2pply to segments. Each retained segment has its own set of dynamic attributes, as histed
below.

Visibility indicates whether the segment should have a visible image. There are only two
values of this attribute, namely: TRUE and FALSE.

SunCore sets visthility to TRUE at initialization time.

Highlighting indicates whether the segment’s image should be highlighted. In SunCore,
highlighting is done by briefly blinking the segment. There are only two values of
the highlighting attribute, namely, TRUE and FALSE.

SunCore sets highlighted to FALSE at initialization time.

Detectability indicates whether the retained segment can be detected by the await_pick input
primitive. A value of 0 means that the segment is not pickable. If two segments

6-18 Revision F of 15 May 1985

SunCore Reference Manual Attributes

overlap, the one with the greatest value of detectability is the one that gets picked.
SunCore sets detectabslity to the default value of 0 at initialization time.

Imagc_'tramformation

indicates how the image of a retained segment is scaled, rotated, or tramslated.
Image transformations are done in NDC space, that is, after all viewing operations
have been performed. Image transformations do not compose and do not cumu-
late. Whenever any function affecting a segment’s image transformation is called,
the transformation is reset to reflect only the values specified by the call. The
smage_transformation attribute of a segment must be consistent with its
image_transformation_type attribute (for instance, if the
image_transformation_type is XLATEZ, it is an error to attempt to rotate the seg-
ment).

SunCore sets the default image_transformation to the identity transformation
(that is, no translation, scaling, or rotation) at initialization.

There are two classes of functions for setting retained segment dynamic attributes. One class
sets the default attributes for subsequently created segments; the other sets attributes on a
named segment basis.

Errors which can be returned from the retained segment dynamic attribute setting routines are:

e There is no retained segment called saegment_name.

e One or more of the attributes is incorrect,

e The segment's image_transformation_type attribute value is incompatible with the

requested function.

6.4.1. set_visibility

set_visibility specifies the default visibility attribute for subsequently created segments,
This does not affect the visibility of existing segments or the currently open segment.

set_visibility(visibility)

int wvisibility; /* TRUE or FALSE */

6.4.2. set_highlighting

set_highlighting specifies the default highlighting attribute for subsequently created seg-

ments.

sat_highlighting(highlighting)

int highlighting; /* TRUE or EFALSE */

Revision F of 15 May 1985 6-19

Attributes SunCore Reference Manual

6.4.3. set_detectability

set_detectability specifies the default detectabslity attribute for subsequently created seg-
ments.

set_detectability (detectability)
int detectability; /* O thru 2°-1 #/

6.4.4. set_image_translate_2

set_image_translate_2 sets the default image transformation attribute for subsequently
created segments.

set_image_translate_2(tx, ty)
float tx, ty; /* x and y translation values in NDC */

The default image transformation is set to a two-dimensional translate by &z and ty.

6.4.5. set_image_transformation_2

set_image_transformation_2 sets the default image transformation for subsequently
created segments,

set_image_transformation_2(sx, sy, a, tx, ty)
fleoat sx, sy: /* x and y scale factors */
float a; /% rotation value in radians clockwise about z axis */
fleat tx, ty; /* x and y translatlion values in NDC */

The default transformation is set to a two-dimensional scale by sz and sy, rotation by a, and
translation by ¢z and ¢&y. The order of transformation is:

1. Scale about the origin of NDC space.

2. Rotate about the origin of NDC space (about the z axis). A positive rotation of 7/2 radi-
ans will rotate the x axis into the y axis.

3. Translate.

To scale and rotate about a point z, y, add dz to ¢z and add dy to ¢y, where

dx
dx

x — (x * sx * cos(a) —y * sy * sin(a))
Yy — (x * sx * gin(a) + y * sy * coz(a))

6.4.6. set_image_translate_3

set_image_translate_3 sets the default image transformation attribute, in normalized dev-
ice coordinates, for subsequently created segments.

6-20 Revision F of 15 May 1985

SunCore Reference Manual Attributes

set_image_translate_3(tx, ty, tz)
float tx, ty, tz; /* x, ¥, and z Translation Values in NDC %/

The default image transformation is set to a three-dimensional translate by ¢z, ty, and t2.

6.4.7. set_image_transformation_3

set_image_transformation_3 sets the default image transformation attribute for subse-
quently created segments.

set_image_transformation_3(sx, sy, sz, ax, ay, az, tx, ty, tz)

float sx, sy, sz; /* x, ¥y, and z Scale Factors */

fleat ax, ay., az; /* Rotation Values in radians clockwise */
/* about the x, y, and z axes. */

fleat tx, ty, tz; /* x, ¥, and z Translation Values in NDC */

The default image transformation is set to a three-dimensional scale by 2, sy, sz, a three-
dimensional rotation by az, ay, az, and a three-dimensional translation by ¢z, ty, tz. The order of
transformation is:

1. Scale about (0.0, 0.0, 0.0) in NDC space,

2. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the z-axis, then about the y-axis, and
then about the z-axis. Since NDC space is a left-handed coordinate system, rotations are
computed using the left-hand rule. When the origin is viewed from the positive side of the
axis of rotation, clockwise rotations correspond to positive rotations.

3. Translate.

6.4.8. set_segment_visibility
set_segment_visibility specifies the viathility attribute for the named segment.
set_segment_visibility(segment_name, visibility)

int segment_name;
int visibility; /* TRUE or FALSE */

When vissbslity is set to FALSE, the segment is erased from the view surfaces. The segment is

redrawn again when viatbility is set to TRUE.

6.4.9. set_segment_highlighting

set_segment_highlighting specifies the highlighting attribute for the named segment.
set_segment_highlighting(segment_name, highlighting)

int segment_name;
int highlighting: /* TRUE or FALSE #*/

Revision F of 15 May 1985 6-21

Attributes SunCore Reference Manual

When highlighting is set to TRUE, the segment is blinked once.

6.4.10. set_segment_detectability

set_segment_detectability specifies the detectability attribute for the named segment.

set_segment_detectability (segment_name, detectability)
int segment_name;
int detectability; /* O thru 2'-1 #/

When detectability is set to 0, the segment cannot be picked by the awast_pick input function. If
two segments overlap, the segment with the greatest detectability is picked.

6.4.11. set_segment_image_translate_2

set_segment_image_translate_2 sets the image transformation attribute for the named
segment,

set_segment_image_translate_2(segment_name, tx, ty)
int segment_name;
float tx; /* x Translation Value in NDC */
fleat ty; /* y Translation Value in NDC */

The image transformation is set to a two-dimensional translate by tz, ty. The named segment is
erased from the view surface and then redrawn after the new image transformation is applied.
This may be done while the segment is open.

6.4.12. set_segment_image_transformation_2

set_segment_image_transformation_2 sets the image transformation attribute for the
named segment.

set_segment_image_transformation_2(segment_name, sx, sy, a., tx, ty)
int segment_name:;

float sx; /* % Scale Factor */

float sy /* ¥ Scale Factor */

float a: /* Rotation Value in radians clockwise about z axist/
float tx: /* x Translation Value in NDC */

float ty; /* y Translation Value in NDC */

The image transformation is set to a two-dimensional scale by sz and sy, a two-dimensional rota-
tion by a, 2and a two-dimensional translation by ¢z and ty. The order of transformation is:

1. Scale about the origin of NDC space.

9. Rotate about the origin of NDC space (about the z axis). A positive rotation of x/2 radians
will rotate the x axis into the y axis.

6-22 Revision F of 15 May 1985

SunCore Reference Manual Attributes

3. Translate,
To scale and rotate about a point 2, ¢, add dz to tz and add dy to ty, where

dz=z—(z%sz*cos(a)~y *sy*sin(a))

dz=y—(z*sz*sin(a)+y*sy*cos(a))

The named segment is erased from the view surface and then redrawn after the new image
transformation is applied. This may be done while the segment is open.

6.4.13. set_segment_image_translate_3

set_segment_image_translate_3 sets the image transformation attribute for the named
segment.

set_segment_image_translate_3(segment_name, tx, ty, tz)
int segment_name;

float tx; /* x Translation Value in NDC %/
float ty: /* ¥ Translation Value in NDC #*/
float tz: /* 2z Translation Value in NDC %/

The image transformation is set to a three-dimensional translate by ¢z, ty, tz. The named seg-
ment is erased from the view surface and then redrawn after the new image transformation is
applied. This may be done while the segment is open.

6.4.14. set_segment_image_transformation_3

set_segment_image_transformation_3 sets the image transformation attribute for the
named segment.

set_segment_image_transformation_3 (segment_name, sx, sy, sz, ax, ay, az, tx, ty, tz
int segment_name;

float sx; /* x Scale Factor #*/

float =sy; /* y Scale Factor */

float sz; /* z Scale Factor %/

float ax; /* Rotation Value in radians clockwise about the x axis */
float ay; /* Rotation Value in radians clockwise about the y axis */
float az: /* Rotation Value in radians clockwise about the z axis */
float tx; /* x Translation Value in NDC #/

float ty; /* ¥ Translation Value in NDC */

float tz: /* z Translation Value in NDC %/

The image transformation is set to a three-dimensional scale by sz, sy, sz, a three-dimensional
rotation by az, ay, az, and a three-dimensional translation by tz, ty, tz. The order of transforma-
tion 1s:

1. Scale about (0.0, 0.0, 0.0) in NDC space.

Revision F of 15 May 1985 6-23

-

Attributes SunCore Reference Manual

9. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the z-axis, then about the g-axis, and
then about the zaxis. Since NDC space is a left-handed coordinate system, rotations are
computed using the left-hand rule. When the origin is viewed from the positive side of the
axis of rotation, clockwise rotations correspond to positive rotations.

3. Traneslate.

The named segment is erased from the view surface and then redrawn after the new image
transformation is applied. This may be done while the segment is open.

6.5. Inquiring Retained Segment Dynamic Attributes

The functions described below are for inquiring the settings of the dynamic attributes for
retained segments. There are two classes of functions for inquiring retained segment dynamic
attributes. One class obtains the default attributes for subsequently created segments and the
other obtains attributes on a named segment basis.

Errors which can be returned from these functions are:
o There is no segment called segment_name.

e The default image transformation attribute value is of a more complex type than the
inquiry function used.

e The segment's image_transformation_type attribute value is incompatible with the
requested function.

e The segment’s image_transformation_type attribute value is of a more complex type than
the inquiry function used.

6.5.1. inquire_visibility

inquire_visibility obtains the default vissbility attribute for subsequently created seg-
ments.

inquire_visibility(visibility)
int *visibility; /* TRUE or FALSE */

6.5.2. inquire_highlighting

inquire_highlighting obtains the default highlighting attribute for the subsequently
created segments.

inquire_highlighting{highlighting)
int +*highlighting; /* TRUE or FALSE */

6-24 ' Revision F of 15 May 1985

SunCore Reference Manual Attributes

6.5.3. inquire_detectability

inquire_detectability obtains the default detectabslity attribute for the subsequently
created segments.

inquire_detectability (detectability)
int *detectability: /* O thru 2%—1 +#/

6.5.4. inquire_image_translate_2

inquire_image_translate_2 obtains the two-dimensional translation components of the
default image transformation for subsequently created segments.

inquire_image_translate_2 (tx, ty)
float *tx, *ty; /* x and y Translation Values in NDC */

6.5.5. inquire_image_transformation_2

inquire_image_transformation_2 obtains the two-dimensional scale factor, rotation, and
translation components of the default image transformation attribute for subsequently created
segments.

inquire_image_transformation_2(sx, sy, a, tx, ty)

float *sx, tsy; /* x and y Scale Factors %/
float *a; /* Rotation Value in radians clockwise about the z axis*/
float *tx, *ty; /* x and y Translation Values in NDC #*/

6.5.6. inquire_image_translate_3

inquire_image_translate_3 obtains the three-dimensional translation components of the
default image transformation attribute for subsequently created segments.

inquire_image_translate_3(tx, ty, tz)
float *tx, *ty, #*tz; /* x, vy, and z Translation Values in NDC %/

6.5.7. inquire_image_transformation_3

inquire_image_transformation_3 obtains the three-dimensional scale factor, rotation,
and translation components of the default image transformation attribute for subsequently
created segments.

Revision F of 15 May 1985 6-25

Attributes SunCore Reference Manual

inquire_image_transformation_a (sx, sy, sz, ax, ay, az, tx, ty. tz) @
float *sx, *sy, *sz; /* %x, Yy, and z Scale Factors */
float *ax, *ay, *az; /* Rotation Values in radians clockwise about the iy
/* x, y, and z axes */
float #*tx, *ty, *tz; /* x, y. and z Translation Values in NDC */

6.5.8. inquire_segment_visibility
inquire_segment_visibility obtains the visibility attribute for the named segment.
inquire_segment_visibility(segment_name, visibility)

int segment_name;
int #*visibility; /t TRUE or FALSE #/

$.5.9. inquire_segment_highlighting
inquire_segment_highlighting obtains the highlighting attribute for the named segment.
inquire_segment_highlighting(segment_name, highlighting)

int segment_name;
int #*highlighting; /* TRUE or FALSE */

6.5.10. inquire_segment_detectability

inquire_segment_detectability obtains the detectability attribute for the named seg-
ment.

inquire_segment_detectablility (segment_nane, detectability)
int segment_name;
int *detectability; /* O thru 2%-1 #/

6.5.11. inquire_segment_image_trans late_2

inquire_segment_image_translate_2 obtains the two-dimensional translation com-
ponents of the named segment’s image transformation attribute.

inquire_segment_image_translate_2 (segment_name, tx, ty)
int segment_name;
float *tx; /* x Translation Value in NDC */
float *ty; /* y Translation Value in NDC */

6-26 Revision F of 15 May 1985

SunCore Reference Manual Attributes

6.5.12. inquire_segment_image_trans formation_2

inquire_segment_image_transformation_2 obtains the two-dimensional scale factor,
rotation, and translation components of the named segment’s image transformation attribute.

inquire_segment_image_transformation_2(segment_name., sx, sy, a, tx, ty)
int segment_name;

float ‘*sx; /* x Scale Factor */

float ‘*sy; /* vy Bcale Factor */

float *a; /* Rotation Value in radians clockwise about the z axis*/
float *tx: /* x Translation Value in NDC */

float *ty: /* y Translation Value in NDC */

6.5.18. inquire_segment_image_translate_3

inquire_segment_image_translate_3 obtains the three-dimensional translation com-
ponents of the named segment’s image transformation attribute.

inquire_segment_image_translate_3(segment_name, tx, ty. tz)
int segment_name;

float *tx; /* x Translation Value in NDC */
float *ty; /* y Translation Value in NDC */
float *tz; /* z Translation Value in NDC */

6.5.14. inquire_segment_image_transformation_3

inquire_segment_image_transformation_3 obtains the three-dimensional scale factor,
rotation, and translation components of the named segment’s image transformation attribute.

inquire_segment_image_transformation_3 (segment_name, sx, sy, sz,
ax, ay, az, tx, ty, tz)
int segment_name;

float ‘*sx; /* x Scale Factor */

float ‘*sy; /* vy Scale Factor */

float ‘*sz; /* z Scale Factor */

fleoat *ax; /* Rotation Value in radians clockwise about the x axis */
float *ay:; /t Rotation Value in radians clockwise about the y axis */
float t*az; /* Rotation Value in radians clockwise about the z axis */
fleat *tx; /* x Translation Value in NDC */

float *ty; /% y Translation Value in NDC */

float *tz; /* z Translation Value in NDC #*/

Revision F of 15 May 1985 8-27

Chapter 7

Input Primitives

SunCore supports several logical input devices providing for interactive use of the graphics sys-
tem. The physical input devices provided are the keyboard and the mouse. The mouse is versa-
tile in that it can be used both as a pointer and a button device,

In the terminology of the ACM Core specification, input devices fall into two distinct classes,
namely: devices that generate events, and devices that may only be sampled for position or
numerical values. SunCore supports the ACM Core standard level 2 input (synchronous); hence
no event generation or event queue is supported. The supported logical devices in SunCore are:

Table 7-1: Input Devices Supported By SunCore

O

Device

Descruption

Pick

Keyboard
Button

Stroke
Locator

Valuator

identifies (picks out) a segment or a primitive within a segment. SunCore uses
the mouse as a pick device.

provides alphanumeric information to the application program.

provides a means of choosing among several alternatives. In SunCore, the three
button devices are on the mouse.

generates a sequence of positions in normalized device coordinates. In SunCore,
the stroke device is the mouse.

provides 2 position in normalized device coordinates. SunCore uses the mouse as
the locator device.

provides a scalar value to the application program which samples it. SunCore
uses the mouse as the valuator device.

A logical input device must be initialized before it can be used.

7.1. Initializing and Terminating Input Devices

Revision F of 15 May 1985

7-1

Input Primitives SunCore Reference Manual

7.1.1. initialize_device — Initialize a Specific Device

initialize_device initializes a specific logical device. This routine must be called before
accessing any of the input devices.

initialize_device(device_class, device_number)
int device_class; /t PICK, KEYBOARD, STROKE */
/* LOCATOR, VALUATOR, BUTTON */

int device_number; /* There are: *%/
/* 1 PICK device */
/* 1 KEYBOARD device */
/* 1 STROKE device */
/t 3 BUTTON devices */
/* 1 LOCATOR device */
VA 1 VALUATOR device */

An initialized input device which uses position information from the mouse must be associated
with an initialized view surface {as an echo surface) before valid data can be read from the dev-
ice. See appendix B for details.

Errors returned from initialize_device:
o The device specified by device_number is not initialized.
e The device specified by device_number is already initialized.

Note: that if the KEYBOARD device is initialized and the program crashes before the KEY-
BOARD device is terminated, the tty will not echo and cbreak will be set. To recover from
this condition, type ‘reset’ followed by a carriage return.

7.1.2. terminate_device — Disable a Specific Device

terminate_device disables a specific device.

terminate_device{device_class, device_number)
int device_class; /* PICK, KEYBOARD, STROKE */
/* LOCATOR, VALUATOR, BUTTON */

int . device_number; /* There are: */
/* 1 PICK devica t/
/* 1 XEYBOARD device */
/* 1 STROKE device */
VA 3 BUTTON devices *#*/
/* 1 LOCATOR device %/
/* 1 VALUATOR device */

Errors returned from terminate_device:

e The device specified by device_number is not enabled.

7-2 Revision F of 15 May 1985

O

SunCore Reference Manual Input Primitives

7.2. Device Echoing

Device echoing means that SunCore can provide a visible indication to the user that the system
has seen the input from a specific input device,

SunCore provides the means whereby the application programmer can control the way in which
input devices are echoed to the user of the graphics system.

Firstly, the types of echoing for each device are defined here. The tables below describe the
types of echoing for specific devices.

Table 7-2: Echoing for Pick Device

Pick Device
Echo Type Actions Performed
0 No echo
1 SunCore blinks the picked segment briefly. A printer’s fist {pointing finger)
indicates the position of the pick device.
2 A printer’s fist {pointing finger) indicates the position of the pick device. Sun-
Core does not blink the picked segment.
Table 7-3: Echoing for Keyboard Device
Keyboard Device
Echo Type Actions Performed
0 No echo
1 The string which the user typed at the keyboard is echoed on the screen start-
ing at the echo reference position,

Revision F of 15 May 1985 7-3

Input Primitives

SunCore Reference Manual

Table 7-4: Echoing for Button Device

Button Device

Echo Type Actions Performed
0 No echo
1 No echo
Table 7-5: Echoing for Stroke Device
Stroke Device
Echo Type Acttons Performed
0 No echo
1 a printers fist (pointing finger) sign is displayed at the cursor position.
2 A string of dots is drawn to follow the path of the cursor. {not implemented)
3 A solid line is drawn to follow the path of the cursor. (not implemented)
4 a printers fist sign is displayed at the final position of the cursor. (not imple-
mented}
7-4 Revision F of 15 May 1985

SunCore Reference Manual Input Primitives

Table 7-8: Echoing for Locator Device

Locator Device
Echo Type Actions Performed

0 No echo

1 A printers fist (pointing finger) sign is displayed at the position of the locator.

2 A solid line is drawn connecting the echo reference point with the locator.

3 A solid line is drawn connecting the echo reference point with the z coordinate
of the locator.

4 A solid line is drawn connecting the echo reference point with the y coordinate
of the locator.

5 A solid line is drawn connecting the echo reference point with either the z coor-
dinate, or the y coordinate, of the locator, whichever is farthest from the echo
reference point.

6 A box is drawn with the position of the locator as ome cormer, and the echo
reference point as the opposite corner,

Table 7-7: Echoing for Valuator Device
Valuator Device
Echo Type Actions Performed
0 No echo
1 The current value of the valuator is displayed on the screen starting at the
echo reference point,
2-11 SunCore does not perform the actions as described in the ACM Core

specification, which sets the values of the valuator into various parameters of
the image_transformation_type attribute of retained segments. SunCore
leaves this up to the application program.

Revision F of 15 May 1985 7-5

Input Primitives SunCore Reference Manual

7.2.1. set_echo — Define Type of Echo for Device

set_echo (device_class, device_number, echo_type)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATCR, BUTTON */
int device_number;
int echo_type;

7.2.2. set_echo_group — Define Type of Echo for a Group of Devices

set_echo_group (device_class, device_number_array, n, echo_type)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATCOR, BUTION */
int device_number_array([]:
int n: /* number of devices in array */
int echo_type;

7.2.8. set_echo_position — Define Echo Reference Point

set_echo_position specifies the position, in normalized device coordinates, which will be
used as the echo reference point. The coordinates must lie within the bounds of NDC space, or
set_echo_position will set the echo reference point to be the point in NDC space closest to the
specified point.

set_echo_position(device_class, device number, echo_x, echo_y)
int device_class: /* PICK, KEYBCARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device_number;
flcat echo_x; " /* x Coordinate of Echo Point #/
float echo_y; /* y Coordinate of Eche Point */

The echo ‘ref_erence point that this function defines is used for certain types of echo such as
rubber band locator echo.

7.2.4. set_echo_surface — Define View Surface for Echo
set_echo_sur face specifies the viewing surface on which echoing will be done.
set_echo_surface {device_class, device_number, surface_name)
int device_class; /* PICK, KEYBOARD, STROKE, %/
/% LOCATOR, VALUATOR, BUTTON #*/

int device_number;
struct vwsurf *surface_name; /* See appendix B */

7-6 Revision F of 15 May 1985

SunCore Reference Manual Input Primitives

An initialized input device which uses position information from the mouse must be associated
with an Initialized view surface (as an echo surface) before valid data can be read from the dev-
ice. See appendix B for details. If a NULL pointer is given for the surface_name argument, any
association of the specified input device with an echo surface is ended.

7.3. Setting Input Device Parameters

7.8.1. set_locator_2 — Initialize Locator Position

set_locator_2 sets the initial locator position in normalized device coordinates.

set_locator_2(locator_number, x, Yy)
int locator_number:
float x:
fleat y;

SunCore currently does not use this initial position of the locator.

7.8.2. set_valuator — Initialize Value and Range for Valuator Device

set_valuator sets the value and range for the valuator device.

set_valuator (valuator_number, inltial_value, low, high)
int wvaluator_number;
float initial_value;
float low;
float high;

The default values are: fritéal_value = 0.0, low = 0.0, and high = 1.0.

7.8.3. set_keyboard — Initialize Keyboard Paramelers

set_keyboard sets the size of the character buffer for the keyboard, the initial character
string, and the initial character cursor counting from the echo reference position.

set_keyboard (keyboard_number, buffer_size, initial_string, 1initial_ cursor_position)
int keyboard_number;
int buffer_size;
char *initial_string;
int 1initial_cursor_position;

SunCore uses default values of buffer_size = 80, initial_string = "enter:", and
instial_cursor_position = 7, The maximum buffer_size and the maximum length of initial_string
are 80 characters.

Revision F of 15 May 1985 7-7

Input Primitives SunCore Reference Manual

7.3.4. set_stroke — Initialize Stroke Device

set_stroke sets parameters for the stroke device.

set_stroke (stroke_number, buffer_size, distance, time)
int stroke_number: /* Device Number */
int buffer_size; /* Number of x, y points - not used #*/
float distance; /* Minimum distance to move */
int time; /* MNot used */

The buffer_size argument is the maximum number of 2, y points in a stroke. The distance argu-
ment is the minimum distance, in normalized device coordinates, which the mouse must move
before a new point is added to the z, y list comprising the stroke. The default setting is dvs-
tance=0.01.

7.8.5. set_pick — Initialize Pick Device

set_pick sets the aperture for the pick device.

set_pick(pick-number, aperture)
int pick-number; /* Device Number */
float aperture; /* Device aperture */

The aeperture argument provides control over the ‘semsitivity’ of the pick device. A square is
defined: with its center at the cursor position and with sides of length 2* aperture. Segments
that intersect this square can be picked. aperfure is given in normalized device coordinates. An
error is returned if the pick-number is incorrect or if the aperture<0.0. The default aperture
square has two pixels per side.

7.4. Reading From Input Devices

7.4.1. await_any_button -~ Wait for Mouse Bulton
await_any._button waits for the user to click any of the mouse buttons.

awalt_any_butteon(time, button_number)
int time: /* Time in microseconds to wait */
int *button_number: /* Button which was hit %/

await_any_button waits for the user to click any initialized button on the mouse, or until the
time specified by the time parameter expires. If the time argument is exactly zero, the buttons
are checked once, then the function returns to the caller immediately.

If a button is clicked before téme expires, the number of the button is returmed in the
button_number parameter. If the user does not click any mouse button before time expires, the
function returns a button number of zero.

7-8 Revision F of 15 May 1985

SunCore Reference Manual Input Primitives

For the mouse, button numbers 1, 2, and 3 represent the left, middle, and right buttons, respec-
tively, when the buttons are facing away from the user.

7.4.2. await_pick — Wait for Pick Device

await_pick waits for the user to pick an output primitive within a visible and detectable
retained segment.

await_pick(time, pick_number, segment_name, pick_id)
int time; /* Time in microseconds to wailt */
int pick_number;
int ‘*segment_name;
int ‘*pick_id;

await_pick waits for the user to click the left hand button on the mouse, or until the time
specified by the time parameter expires. If the time argument is exactly zero, the function tests
the button once, and if the button has been clicked, performs the pick operation.

If the button is clicked before time expires, the function returns the segment name of the seg-
ment that the pick device is pointing at, and the pick_id parameter is set to the value of the
pick_id attribute of the primitive that was picked. If the user does not click any mouse button
before #me expires, or no segment is found where the user points, the function sets the
segment_name and pick_i¢d parameters to zero.

await_pick only searches those segments which are visible and detectable and appear on the
echo surface of the specified PICK device. Primitives within a segment have bounded volume
descriptors. The square pick aperture must intersect one of these ‘extents’ in order that the
segment_name and pick_id be returned. If more than one segment is at the point, the segment
with the highest value of the detectability attribute is returned. Detectability may be set to zero
to prevent a segment from being picked.

Errors returned from await_pick:

® The specified pick device does not exist.

7.4.3. await_keyboard — Wait for Input from the Keyboard

await_keyboard waits for the user to type a line of input on the keyboard.

awalt _keyboard (time, keyboard_number, input_string, 1ength)
int time; /* Time in microseconds to wait 1t/
int keyboard_number:
char t*input_string;
int *length;

awvait_keyboard waits for the user to enter data at the keyboard, or until the time specified
by the time parameter expires. If the time argument is exactly zero, the function tests once to
see if a character has been typed, and then returns to the caller.

Revision F of 15 May 1985 7-9

Input Primitives SunCore Reference Manual

If any data is entered at the keyboard before time expires, the function returns the typed char-

acters in an array pointed to by input_string. The length of this character string is returned in @
length. The string is null terminated. If the user does not enter any data before time expires,

the function sets the lemgth parameter to zero. If a carriage-return or newline character is

typed, the function returns with the input string containing a newline character as the last non-

null character.

Errors returned from await_keyboard:

o The specified keyboard does not exist.

7.4.4. await_stroke_2 — Wast for User to Draw a Line

await_stroke_2 waits for the user to draw a line, consisting of a list of points in normalized
device coordinate space, using the mouse.

await_stroke_2(time, stroke_number, array._size, x_array, y_array, number_points)

int time; /* Time in microseconds to walt */
int stroke_number; /* Stroke device to wait for */
int array_size; /* Maximum size of x and y arrays */

float x_array[]:
fleat y_array[]:
int ‘*number_points; /* Number of x, y coordinates actually read */

await.stroke waits for the user to draw a line using the mouse, or unti! the time specified by @
the t{me parameter expires. If the fime argument is exactly zero, the function tests once to see
if a line has been drawn, and then returns to the caller.

The line starts at the current position of the locator, and finishes when the user clicks button 3
on the mouse. When the function returns, the number of z, y coordinates actually read is
returned in the number_points argument. When the number of points read equals array_size the
function returns before time expires.

7.4.5. await_any_button_get_locator_2 — Read Locator When Button Clicked
await_any_button_get_locator_2 waits for the user to click any of the mouse buttons.

When the button is clicked, the function returns the current normalized device coordinates of
the locator.

await_any_button_get_locator_2(time, locator_number, button_number, x, Y)

int time; /* Time in microseconds to wait */

int 1locator_number; /* Locator device to wait for */
int ‘*button_number; /* Button which was clicked */
float *x, %y /* Returned point in NDC */

await_any_button_get_locator_2 waits for the user to click any mouse button, or until
the time specified by the time argument expires. If the time argument is exactly zero, the func-
tion checks if any buttons have been clicked immediately and then returns. @

7-10 Revision F of 15 May 1985

SunCore Reference Manual , Input Primitives

If the time expires before the user has clicked any of the mouse buttons, the function returns a
zero in the button_number argument. '

7.4.6. await_any_button_get_valuator — Read Valuator When Button Clicked

await_any_button_get_valuator waits for the user to click any of the mouse buttons, or
for a specified time. When the button is clicked, the function returns the current value of the
valuator.

await_any button_get_valuator (time, valuator_number, button_number, value)

int time: /* Time in microseconds to wait */

int wvaluator_number; /* Valuator number to read from */
int *button_number: /* Button which was clicked */
float *value; /* Value of valuator */

await_any_button_get_valuator waits for the user to click any mouse button, or until
the time specified by the fime argument expires. If the time argument is exactly zero, the func-
tion checks if any buttons have been clicked and then returns immediately.

If the user clicks one of the mouse buttons, the function returns with the value of the valuator,
and the number of the button which was clicked. If the time expires before the user has clicked
any of the mouse buttons, the function returns a zero in the button_number argument. Move-
ment of the mouse left or right lowers or raises the value of the valuator.

7.4.7. get_mouse_state — Low Level Mouse Support (SunCore eztension)

get_mouse_state reads the low level mouse z, y, and button information corresponding to a
particular input device. The buttons are up-down encoded, and the location of the mouse is in
normalized device coordinates.

get_mouse_state (device_class, device_number, x, y, buttons)
int device_class; /* PICK, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device_number:;
fleat *x, ty;
int ‘*buttons;

- Bit 0 of buttons is the right-hand mouse button.

Bit 1 of buttons is the middle mouse button.
Bit 2 of buttons is the lefi-hand mouse button.

A zero bit means that the button is up, while a one bit means that the button is down.

7.5. Inquiring Input Status Parameters

Revision F of 15 May 1985 7-11

Input Primitives SunCore Reference Manual

7.5.1. inquire_echo — Obtain Type of Echo for Device

inquire_echo obtains the echo_type for the specified device.

inquire_echo {device_class, device_number, echo_type)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */

int device_number;
int *echo_type:;

7.5.2. inquire_echo_position — Obtain Echo Reference Point

inquire_echo_position obtains the position, in normalized device coordinates, of the echo
reference point for the specified device.

inquire_echo_position(device_class, device number, echo_x, echo_y)
int device_class; /* PICK, KEYBOARD, STROKE, */
' /* LOCATOR, VALUATCR, BUTTON */

int device_number:
float *echo_x; /* x Coordinate of Echo Point */

float *echo_y: /* y Coordinate of Eche Point */

7.5.3. inquire_echo_sur face — Obtain View Surface for Echo

inquire_echo_surface obtains the viewing surface on which echoing is done for the
specified device.

‘inquire_echo_surface (device_class, device_number, sur face_name}
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTION */

int device_number:
struct vwsurf ‘*surface_name;

7.5.4. inquire_locator_2 — Obtain Inttial Locator Position

inquire_locator_2 obtains the initial position of the specified locator in normalized device
coordinates.

inquire_locator_2(locator_number, X, ¥)
int locator_number;
float *x;
float *y;

7-12 Revision F of 15 May 1985

O

SunCore Reference Manual Input Primitives

7.5.5. inquire_valuator — Obtain Value and Range for Valuator Device

inquire_valuator obtains the value and range for the specified valuator device.

inquire_valuator (valuator_number, initial value, low, high)
int wvaluator_number:;
float *initial_value;
float *low;
filoat *high:

7.5.6. inquire_keyboard — Obtain Keyboard Parameters

inquire_keyboard obtains the size of the character buffer, the initial character string, and
the initial character cursor for the specified keyboard.

inquire_keyboard (keyboard_number, buffer_size, initial_string,
initial_cursor_position)
int keyboard_number;
int ‘*buffer_size;
char *initial_string;
int *initial cursor_position;

7.5.7. inquire_stroke — Obtatn Stroke Device Parameters

inquire_stroke obtains the buffer size, distance, and time parameters for the specified stroke
device.

inquire_stroke(stroke_number, buffer_size, distance, time)

int stroke_number; /* device number */

int *buffer _size; /* number of x, y points in buffer - not used*/
float *distance; /* minimum distance to move in NDC +/

int *time; /* Not used */

Revision F of 15 May 1985 7-13

-

Chapter 8

Programming Examples

8.1. The Sun Workstation Factory

This example provides a relatively simple programming example that nevertheless uses a goodly
number of SunCore’s facilities. The example is called factory. It has a factory building with a
smokestack and a cloud of smoke puffing out. Silicon chips move in at one end of the building,
and Sun Workstations come out of the other end.

Facilities displayed by this simple example include texturing, translation, scaling, and output
clipping. The example is presented in pieces, with a narrative accompanying each of the pieces.

8.1.1. Declarations and the Main Program

First there 3 an include of the file usercore.h which contains the definitions required for using
the graphics package:

#include <usercore.h>

Then there are some definitions:

/* Define segment numbers */
#define FACTORY 10
#define CLOUD 9
#define WORKSTATION. 1 1
#define WORKSTATICN_2
#define WORKSTATION_3 3
#define CHIP_1 4
$define CHIP_2 5
#define CHIP_3 &

N

Then we define and initialize the variables that describe the outlines of the various objects in the
picture:

Revision F of 15 May 1985 &1

Programming Examples SunCore Reference Manual

static float delta[] = {0.0, 0.025, 2%0.025, 3*%*0.025, 4*0.025,
5%#0.025, 6*0.025, 7*0.025, 8*0.025, 9*0.025,
10*0.025, 11%*0.025, 12*0.025}:;

{0.9961, 0.1765, 0.1334, 0.1334, 0.4667,
0.1334, 0.1334, 0.1334, 0.8001, 0.2667,
0.5334, 0.0};
{0.5334, 0.2079, 0.5334, 0.5334, 0.5334,
0.5020, 0.5020, 0.3334, 0.2667, 0.,5334,
0.5334, 0.2667};
{0.0, 0.0, 0.4001, 0.0, 0.2118, 0.3529,
0.6471, 0.4001, 0.4001, 0.4001, 0.4001, 0.3882}:

static float redtex(]

static float grntex[]

static flocat blutex{]

int bw2dd(). /* Device driver name for the Sun-2 */
/* monochrome display — see appendix B */
struct vwsurf vsurf = DEFAULT_VWSURF {bw2dd} ;
/* The DEFAULT_VWSURF macro is defined */
/* 1in usercore.h %/

Then we have the main program:

main ()

{

short i, pO, pl. p2, p3:;
int error;

float scale;

float clx, cly:

The first call in the program is to initialize SunCore, with an appropriate ezit if there is an
error returned:

error = initialize_core(DYNAMICB, NOINPUT, TWOD):;
if {error)
exit (0);

Then we instialize and select @ view surface. Again, we ezit if there was an error returned:

error = initialize_view_surface(&vsurf, FALSE);
error |= select_view_surface (&vsurf); -
if {error)

exit(1);

Then we establish a viewport and a window. Note that we can set clipping on oulput — this is a
SunCore extension to the ACM Core.

set_viewport_2(0.05, 0.95, 0.05, 0.7}
set_window(30.0, 225.0, 30.0, 225.0);
set_output_clipping (TRUE) ;
set_window_clipping (FALSE) ;

82 Revision F of 15 May 1985

-

SunCore Reference Manual Programming Examples

Set up the color loqkup table.

define_color_indices (&vsurf, 1, 12, redtex, grntex, blutex);

Now make a temporary segment for a title and border.

create_temporary_segment () ;
move_abs_2 (30., 30.);
line_rel_2(0., 195.):
line_rel_2(195., 0.):

line rel_2(0., -195.);
line_rel_2(-195., 0.);
set_charprecision (CHARACTER) ;
set_charsize(l4., 14.);
set_text_index (1) ;
move_abs_2(40., 200.):

text ("SunCore”) ;
close_temporary segment () ;

Nezt we establish a segment for the factery. This segment ss the simplest type, since we perform
no transformations of any kind on st.

set_image_transformation_type (NONE) ;
create_retalined_segment (FACTORY) ;
factory(110.0, €0.0):;
close_retained_segment () ;

Nezxt we establish a segment for the cloud above the factory. This segment s subject to scaling,
s0 we must allow for transformations.

set_image_transformation_type (XFORM2) ;

create_retained_segment (CLOUD) ;

map_world_to_ndc_2(120., 100., &clx, &cly);

set_segment_1image_transformation_2 (CLOUD, ©.05, 0.1,
0.0, clx, cly + 0.02);

cloud (0., 0.);

close_retained_segment () ;

Lastly, we establish segments for the chips and the workstations. The chips and workstations wnll
be moving across the picture, so these segments must allow translation.

Revision F of 15 May 1985 &3

Programming Examples SunCore Reference Manual

set_image_transformation_type (XLATE2) ;

/* Do the Sun Workstation Segment */
create_retained_segment (WORKSTATION_1);
sunws (160.0, 60.0);
close_retained_segment () ;
create_retained_segment (WORKSTATION_2}:
sunws (160.0, 60.0)
close_retained_segment () ;
create_retained_segment (WORKSTATION_3) ;
sunws {160.0, €0.0};
close_retained_segment () ;

/* Do the Chip Segment */
create_retained_segment (CHIP_1) ;
chip(20.0, 70.0):
close_retained_segment () ;
create_retained_segment (CHIP_2};
chip (20.0, 70.0);
close_retalned_segment () ;
create_retained_segment (CHIP_3);
chip (20.0, 70.0};
close_retained_segment () ;

Notice that we created the workstations all on top of each other, and also all the chips on top of
each other. The actual spatial separation of the individual segments is handled in the main body
of the animation code,

Now we get to the body of the code which animates the picture. The outer for loop is done 100
times. The calls on the translation routines make the chips and workstations move. The inner
for loop makes the cloud grow:

pO = 0; pl = 4; p2 = 8;

for (i=0; 1<100; i++4) {
set_segment_image_translate_2 (WORKSTATION_ 1, delta[pO], ©.0);
sot_segment_image_translate_2 (WORKSTATION. 2, delta[pl], 0.0};
set_segment_image_translate_2 (WORKSTATION_3, delta[p2]. 0.0):
set_segment_image_translate_2 (CHIP_3, delta[p2], 0.0):
set_segment_image_translate_2 (CHIP_2, delta(pl], 0.0):
set_segment_image_translate_2 (CHIP_1, delta[p0], 0.0):
PO""",‘ pl-H-; p2++;
i1f (p0 > 11

o;

11

0;

11

0;

for (scale=0.1; scale<l.0; scale += 0.2)
set_segment_image_transformation_2(CLOUD, 0.5 * scale, scale,

0.0, clx, cly + scale * 0.2);

e
[
v v

Finally, when everything is done, we deselect the view surface, and terminate SunCore:

8-4 Revision F of 15 May 1985

.

SunCore Reference Manual Programming Examples

deselect_view_surface (&vsurf) ;
terminate_core();
} /* End of the main program %/

The remainder of the demonstration program consists of the subroutines which fill in the details
in the individual segments.

8.1.2. The factory Drawing Function

Firat, here are the coordinates for the outline of the factory itself:

{0.0, 0.0, 8.0, 2.0, 3.0, 2.0, 3.0,
1.0, 3.0, 1.0, 17.0, 0.0, -40.0};
{0.0, 20.0, 0.0, 20.0, 0.0, -20.0,
0.0, 15.0, 0.0, -15.0, 0.0, -20.0, 0.0};

1}

static float factdx([]

static float factdy([]

The nezt set of declarations describe the outline of the windows in the factory

static float winddx({]
statlc flcat winddy([]
statle Int black 3;
static int brick 1:;

.0, 10.0, 0.0, —10.0};
.0, 0.0, =5.0, 0.0};

{0.0, ©
{0.0, 5

*

Now we have the actual code of the factory drawing routine itself.

factory (x0, y0)
float x0, yO:

{

The z0 and y0 arguments to the factory function describe the absolute position in world coords-
nates at which the factory should appear. The actual outline of the factory is described by the
array of coordinates declared above.

set_fill_index (brick);

move_abs_2 (x0, yO); /* Move to appropriate position */
polygon_rel_2{factdx, factdy, 12); /* Draw the factory outline
Now we draw the windows within the factory:

set_fill_index(black);
move_rel_2(5.0, 10.0); /* Move to position of first window */
pelygon_rel_2 (winddx, winddy, 4): /* and draw the window %/
move_rel_2(15.0, 0.0); /* Move to position of second window *+/
polygen_rel 2 (winddx, winddy, 4): /* and draw the window */
set_fill index(1); /* reset fill index */

} /* End of the factory drawing function */

Revision F of 15 May 1985 8-5

*/

Programming Examples SunCore Reference Manual

The next function is the one which draws the Sun Workstations within the workstation segment.

8.1.8. The Workstation Drawing Function

The declarations below describe the outline of the Sun Workstation. Tube describes the screen,
Case describes the outer outline of the case, base describes the base of the Workstation, and

keybd describes the appearance of the keyboard:

static float tubex(]
static float tubey[]

{0.0, 5.0, 0.0, —5.0};
{5.0, 0.0, =5.0, 0.0};

static float casex[] = {1.0,

7.0, 1.0, 1.0, —1.0, —7.0, =1.0};
static float casey([] {7.0, 0.0

, =7.0, 1.0, 7.0, 0.0, ~1.0};

{9.0, —1.0, ~1.0, =5.0, —1.0};
{0.0, 0.0, —2.0, 0.0, 2.0};

static float basex[]
static float basey([]

static float keybdx[]
static float keybdy[]

0o
P
o
L0
(Y
)

0, 3.0, 0.0, —-10.0, ~3.0, 10.0, 3.0};
{-1.0, 0.0, 2.0, 2.0, 0.0, —3.0, 0.0, 3.0};

sunws (x0, y0)

flecat x0, yO:
{

Then all we have to do is move to the coordinates that were supplied as function arguments, and
draw the lines:

move_abs_2 (x0+5.0, y0+8.0) ; /* Move to the position given */
polyline_rel_2(tubex, tubey, 4); /* Draw the tube */

move_rel 2(—2.0, —-1.0);
polyline_rel_2(casex, casey, 7); /* Draw the case */

move_rel_2(—1.0, —7.0);

polyline_rel_2(basex, basey, S5); /* Draw the base */

move_abs_2 (x0, y0+1.0):

polyline_rel_2(keybdx, keybdy, 8}; /* Draw the keyboard */
} /% End of the Workstation Drawing Functicn */

8.1.4. The Chip Drawing Function

The declarations below describe the outline of the chips. Plasti describes the outline of the chip
itself, while lead describes the outline of the leads on the chip:

8-6 Revision F of 15 May 1985

SunCore Reference Manual Programming Examples

{0.0, 16.0, 0.0, —16.0};
{4.0, 6.0, -4.0, 0.0}:

static float plastix[]
static float plastiy[]

static float leadx[] = {—1.0, 2.0, —1.0, 9.0};
static float leady[] = {2.0, 0.0, =-2.0, —-4.0Q};

chip (x0, yO)
fleoat x0, yO;

{

short 1i;

Then oll we have to do i3 move to the coordinates that were supplicd as function arguments, end
draw the lines:

set_rasterop (XORROP) ;
move_abs_2(x0, yO): /* Move to appreopriate position %/

polyline rel_2(plastix, plastiy, 4); /* Draw tne chip */
move_rel_2(2.0, 1.0);

for (1=0; 1<5; i++) { /* Draw the leads on the chip */
polyline_rel_2({leadx, loady, 4}
move_rel_2(3.0, 4.0);

}

set_rasterop (NORMAL) ; /* reset rasterop */
Cl : } /* End of the chip drawing function #*/

8.1.5. The Cloud Drawing Funclion

The last function is the one that draws the clond. ‘The cloud function is easy: all we have to do
is draw its outline. The actual scalivg of the cloud is done in the main program.

The declarations below describe the outline of the cloud:

static float cloudx[]]

{.0, 8.0, -8.0, -4.0, 2.0, 14.0, 8.0, 0.0,
12.0, 8.0, 4.0, 0.0, -10.0, 10.0, 4.0, -2.0,
-6.0, -12.0, -6.0, -12.0, -10.0};

{12.0, 8.0, 2.0, 6.0, 6.0, 10.0, -4.0, -6.0,
10.0, 0 N, -4.9, —-19.0, -12.0, -2.0, -6.0,
-8.0, -4.0, 0.0, 4.0, -8.0, 4.0};

static float cloudy[}]

cloud {x0, yO)
float x0, yO;
{

Then all we have to do is move to the coordinates that were supplied as function arguments, and

O draw the lines:

Revision F of 15 May 1985 87

Programming Examples

move_abs_2 (x0, yO):
polyline rel_2{cloudx, cloudy, 21);

} /*

88

End of the cloud drawing function

SunCore Reference Manual

*/

Revision F of 15 May 1985

Appendix A

Deviations from ACM SIGGRAPH Core

This appendix points out specific differences between the SunCore graphics package and the
ACM SIGGRAPH Core Specification. In addition to differences noted here, SunCore has
numerous extensions to the ACM Core which are documented in the main body of this manual.

A.1. Unimplemented Functions

Here is a list of those functions which SunCore does not implement:

Table A-1: Unimplemented Primitive Attribute Functions

Primitive Attribute Functions

sel_charjust

e inquire_charjust

Table A-2: Unimplemented Synchronous Input Functions

Synchronous Input Functions

initialize_group
awasl_stroke_3
set_echo_segment
set_button

set_locator_3
set_locport_$
snquire_snput_device_characteristics
snquire_locator_dimension
snquire_button
snquire_locport_2
snquire_echo_segments

e tlerminate_group

sel_pick

set_all_buttons
set_locport_2
inquire_input_capabilities
snquire_stroke_dimension
snquire_pick
snquire_locator_3
snquire_locport_8

Revision F of 15 May 1985

Deviations from ACM SIGGRAPH Core

SunCore Reference Manual

Table A-3: Unimplemented Asynchronous Input Functions

Asynchronous Input Functions

o enable_device e enable_group
o disable_device e dizable_group
o disable_all o read locator_2
o read locator_8 e read_valuator
e awatl_cvent o flush_device_events
o flush_group_cvents o flush_all_events
e associate o disassociate
o disassociate_device o disassociate_group
o disassociate_all o get_pick_data
e gel keyboard_data e get_stroke_data_2
e get_astroke_data_3 e get_locator_data_2
s get_locator_data 8 e get_valuator_data
e inguire_device_associations e inqusre_device_status

Table A-4: Unimplemented Control Functions

Control Functions

o inguire_oulpul_capabilitics e inquire_selected_surfaces
o set_tmmediate_visibslity e make_picture_current
e inquire_control_status o set_visibilities
o log error

Table A-5: Unimplemented Escape Functions

Escape Functions
& escape e inquire_escape
A.2. Other Differences
Text: SunCore does not have the charplane primitive attribute; instead, the charpath,

charup, and charspace attributes are used to specify text orientation as described in the manual.
The current release of SunCore has no STROKE precision text and no text justification. The
inquire_tezt_extent_2 and inquire_tezi_eztent_3 functions do not take a view surface name as an
argument. The text enquiry functions only return meaningful values when the current charpre-
cision attribute is CHARACTER.

A-2 Revision F of 15 May 1985

SunCore Reference Manual Deviations from ACM SIGGRAPH Core

Raster Extensions: SunCore contains several of the proposed raster extensions to the
ACM Core and other raster functions. Thus there are no color or intensity primitive attributes.
Instead a color lookup table model is used. There are several primitive attributes which are
indices into lookup tables. In addition, hidden surfaces are supported on color view surfaces.
This requires a second parameter to the instialize_view_surface function.

Miscellaneous: SunCore adds these functions:
aet_image_translate_$3,

inquire_image_translate_3,
set_segment_tmage_translate_3,
tnquire_segment_smage_translate_3.

The functions:

set_primitive_attributes_2,

set_primitive_attributes. S,

inquire_primitive_attributes_2, and

inquire_primitive_atiributes 3

are replaced by the functions set_primitive_attributes and inquire_primitive_attributes, which are
equivalent to the 3-D functions.

Default values for many SunCore system parameters differ from those of the ACM Core.

There are restrictions on set_world_coordinate_matriz_2 and set_world_coordinate_matriz_9§ as
described in the manual.

As described in the manual, some of the echo types for input functions in the ACM Core are not
implemented.

The marker symbol primitive attribute deviates from the ACM Core as described in the manual.
Batching of updates only applies to dynamic segment attributes as described in the manual.

View surfaces initialized for hidden-surface elimination do not support dynamic segment attri-
butes of highlighting, transformation, or translation. énstielize_view_surface can optionally
suppress clearing the view surface when 1t is initialized.

Revision F of 15 May 1985 A-3

Appendix B

SunCore View Surfaces

SunCore supports several types of view surfaces and multiple simultaneous instances of any
type, subject to the hardware resources of the workstation on which a SunCore program is
being run. The current release allows up to five view surfaces to be active at any time. This
appendix gives implementation details of SunCore view surfaces and provides information on
initializing them.

B.1. The vwsurf Structure

View surface names in SunCore are structures, The following declaration and definitions are
contained in the header file fusr/includef/usercore.h:

#define DEVNAMESIZE 20

struct vwsurf {
char screenname [DEVNAMESIZE];
char windowname [DEVNAMESIZE]:
int windowfd;
int (*dd} ().
int instance;
int cmapsize;
char cmapname [DEVNAMESIZE];

int flags;
char #**ptr;
)

#define NULL_VWSURF {"", "", o0, 0, O, O, ", O, O}
#define DEFAULT_VWSURF (ddname) {"", "", O, ddname, O, O, "", O, O}
#define VWSURE_NEWFLG 1

After initialization via the function snstialize_view_surface, a vwsurf structure represents a
specific instantiation of a particular type of view surface. The elements of the vwsurf structure
completely characterize that instantiation and/or provide information used to initialize the view
surface. This appendix refers to members of the vwsurf structure using the standard C notation,
as if the declaration

struct vwsurf vwsurf;

Revision F of 15 May 1985 B-1

SunCore View Surfaces SunCore Reference Manual

had been given.

vwsurf.screenname
is a character string which is the name of the physical device on which the view surface

appears (for example, /dev/cgone0).

vwsurf.windowname
is a character string which is the name of a window device which has been opened for
display of the output primitives directed to the view surface (for example, /dev/win10).

vwsurf.windowfd
is the file descriptor corresponding to this device. Since, for all current SunCore view sur-
face types, output display and input device echoing are accomplished through window sys-
tem routines, these members of the structure are valid even for raw output devices.

vwsurf.dd
is the name of the device-independent/device-dependent interface routine through which
graphics output to the view surface will pass. This routine defines the view surface type.
The current SunCore view surface types are described below.

vwsurf.instance
identifies the instantiation of a view surface type. It should be set to 0 prior to calling
initialize_view_surface. SunCore will set this value appropriately if the initialization is suc-
cessful.

vwsurf.cmapsize
defines the size of the color lockup table for the view surface, and the character string
vwsurf.cmapname gives its name, which can be used to share a color map between two or
more view surfaces on the same physical device. These elements of the vwsurf structure are
used only for view surfaces on color devices. Their use is described more fully below.

vwsurf.flags
is a field of one-bit flags. Currently, only one flag, VWSURF_NEWFLG, is defined; this flag is
described below.

vwsurf.ptr
is a pointer to an array of character pointers. The array should be terminated by 2 null
pointer. The strings pointed to by the array contain optional information which may be
used to initialize the view surface. Details are provided below.,

B.2. View Surface Types

A view surface type in SunCore is the name of the driver routine for the device-
independent/device-dependent interface. The name of the routine corresponding to the desired
view surface type should be put into vwsurf.dd prior to calling initialize_view_surface (see the
programming examples in Chapters 1 and 8).

The current release of SunCore has six view surface types:
bwidd The Sun-1 monochrome bitmap display used as a raw device.
bwodd The Sun-2 monochrome bitmap display used as a raw device.

cgldd The Sun-1 color graphics display used as a raw device.

B-2 Revision F of 15 May 1985

SunCore Reference Manual SunCore View Surfaces

cgldd The Sun-2 color graphics display used as a raw device.

pizwindd A monochrome (one bit deep) graphics window within the Suntools window environ-
ment. This window may appear on either a color or monochrome display.

cgpizwindd A color graphics window within the Suntools window environment. This window
must appear on a color display.

Only view surface types egldd, cg2dd, and egpizwindd support hidden surface removal.

The term ‘raw device’ above implies that the physical device specified by vwsurf.screenname is
used completely and only for display of graphics output directed to one view surface. This
allows somewhat more efficient display of output primitives. It also implies that the user has not
started up a Suntools window environment using the device as a desktop.

Low-level device-dependent routines are not part of SunCore. For the sake of efficiency, such
routines are necessary for some applications. The Programmer’s Reference Manual for the Sun
Window System contains information on low-level routines corresponding to bwidd, bw2dd,
cgldd, and cg2dd (the ‘pixrect’ level) and pizwindd and cgpizwindd (the ‘pixwin’ level),

B.3. Choosing a View Surface Type within an Application Pro-
gram

It may be desirable to write application programs which use different view surface types depend-
ing on the environment. The next two subsections provide examples of ways to do this. The
next subsection illustrates using a Shell variable, and the subsection after that uses the
get_view_surface function to do the job in a more general way.

B.3.1. Using Shell Variables to Determsne the Environment

Examining a Shell environment variable is one way to determine which environment a program
is running in. The following example illustrates using either a bw2dd (raw Sun-2 monochrome
display) or a pizwindd (monochrome window) view surface depending on whether the user is
currently in the Suntools window environment. The WINDOW_ME environment variable is nor-
mally defined in the user’s environment if and only if the window system is being used.

Revision F of 15 May 1985 B-3

SunCore View Surfaces SunCore Reference Manual

/*
*+ an example of selecting a view surface
+ depending on the current environment

*/

int bw2dd():;

struct vwsurf rawsurface = DEFAULT_VWSURF (bw2dd);

int pixwindd():

struct vwsurf windowsurface = DEFAULT_VWSURF (pixwindd) ;

main()
{
struct vwsurf *surface, *get_surface():
surface = get_surface():
initiallze_view_surface (surface, FALSE):
select_view_surface (surface);
)
struct vwsurf *get_surface() /* function to return pointer 4/
{ /* to appropriate view surface */

if (getenv ("WINDOW_ME"))
return (&windowsur face) :
else '
raturn (&rawsurface) ;

)

B.8.2. The get_view_surface Function

The SunCore library includes the get_view_surface function which a programmer can use
to. set up a view surface structure using information from command-line arguments and the
environment. A complete listing of get_view_surface appears at the end of this section.
get_view_sur fa';:e has the following declarations for C, FORTRAN, and Pascal:

B-4 Revision F of 15 May 1985

SunCore Reference Manual SunCore View Surfaces

O Table B-1: Declarations of get_view_surface in C, FORTRAN, and Pascal

Language Declaration

get_view_surface (vsptr, argv)
C struct vwsurf ‘*vsptr:
char ‘**argv;

getviewsurface (vwsurf)

FORT integer vwsurf (VWSURFSIZE)

Pascal getviewsurface{var surfacename: vwsurf): integer: external:

The elements of argv are pointers to null-terminated strings which are extracted from the com-
mand line that started the application program. The following fragment of C code illustrates the
use of get_view_sur face for C programs:

main(arge, argv)
int arge:;
char **argv;

{5)) struct vwsurf vwsurf;

tf (get_view_surface(&vwsurf, argv))
exit(1):
initialize_view_surface(&vwsurf, FALSE))

-
more code

}

get_view_surface returns zero (0) if it succeeds and non-zero otherwise. The vwsurf struc-
ture will have vwsurf.dd and possibly vwsurf.screenname set to appropriate values. Other ele-
ments of the structure will be null -— the programmer may modify them to suit the application,
but it is not necessary.

<) The only command-line option that get_view_surface currently recognizes is the
—d display_device option, where display_device is the name of the physical display device

Revision F of 15 May 1985 B-5

SunCore View Surfaces SunCore Reference Manual

(/dev/fb or /dev/cgoned for example). The vwsurf structure will be set up to rur on this dev-
ice. get_view_surface also determines if the window system is running on the device, and
chooses vwsurf.dd appropriately.

Using get_view_surface has a disadvantage in that since it refers to all six SunCore types
of view surfaces, any program using it will get the code for all six device-independent/device-
dependent driver routines linked in. For this reason, the code for get_view_surface is
included here. SunCore programmers may wish to tailor a version of this code for particular
machine configurations and applications.

The code of get_view_surface contains calls on several functions from lhbsunwindow.a —
the window system library. Details of these routines can be found in the Programmer’s Refer-
ence Manual for the Sun Window System.

B-6 Revision F of 15 May 1985

-

SunCore Reference Manual SunCore View Surfaces

/l‘

*/

get_viewv_surface -- Determines from command-line arguments and
the environment a reasonable view surface
for a SunCore program to run on.

#include <sys/file.h>

#include <sys/ioctl.h>

#include <sun/fbio.h>

#include <stdio.h>

#include <sunwindow/window_hs.h>
#include <usercore.h>

int
int
int
int
int
int

bwldd () : /* All six device-independent/device-dependent &/
bw2dd (} ; /* routines are referenced in this function. o/
cgldd () ; /* This means the linker will pull in all of them */
cg2dd () ;

pixwindd():

cgpixwindd () :

statid'struct vwsurf nullvs = NULL_VWSURF;

static char *devchk;
static int devhaswindows;

int

get_view_surface (vaptr, argv)

struct vwsurf *vsptr;
char ttargv:;

{

int devfnd, fd, chkdevhaswindows(); :
char #*wptr, dev[DEVNAMESIZE], fgetenv():
struct screen screean;
struct fbtype fbtype;

tysptr = nullvs;
devfnd = FALSE;
if (argv)
/1
If command-line arguments are passed, process themtusing
win_initscreenfromargv (see the Programmer's Reference Manual
for the Sun Window System). The only option used by
get_view_surface is the -d option, allowing the user to
specify the display devlce on which to run.
*/
{ .
win_initscreenfromargv (&screen, argv);
if (screen.scr_fbname[0] != '\0')
{
/* -4 option was found %/
devind = TRUE.
strncpy (dev, screen.scr_fbname, DEVNAMESIZE);
/i
Check to see if this device has a window system
running on it. If so devhaswindows will be TRUE

Revision F of 15 May 1985 . . B-7

SunCore View Surfaces SunCore Reference Manual

a function in libsunwindow.a. It takes a function
as 1its argument, and applies this function to every
window being displayed on any screen by tha window
system. To do this it opens each window arid passes
the windowfd to the function. The enumeratiocn
continues until all windows have been tried or the
function returns TRUE.

*/

devchk = dev;

devhaswindows = FALSE:;

win_enumall (chkdevhaswindows) ;

3

following the call to win_enumall. win_enumall is c::> !

}
if (!devfnd)

/* No -d option was specified */
if {wptr = getenv("WINDOW_ME"))
{
/*
Running in the window system. Find the device from
which this program was started.
*
/
devhaswindows = TRUE;
if ((fd = open(wptr, O_RDWR, 0}) < O)
{

fprintf (stderr, "get_view_surface: Can't open ¥%s\n",

wptr) ; ;
return{l); @ i
}

win_screenget {fd, &screen);
close(fd);
strncpy (dev, screen.scr_fbname, DEVNAMESIZE) ;

}

{
/*
Not running in the window system. Assume device l1s
/dev/fb,
*/
devhaswindows = FALSE;
strncpy (dev, "/dev/fb", DEVNAMESIZE):
}
/* Now have device name. Find device type. */
if ((fd = open(dev, O_RDWR, O)}) < 0)
{
fprintf (stderr, "get_view_surface: Can't open ¥%s\n", dev);
return(l);

else

}
if (loctl(fd, FBIOGTYPE, &fbtype) == -1)
{
fprintf (stderr, "get_view_surface: loctl FBIOGTYPE failed on %s\n",

dev) :

close(fd):;

return (1) ;

B-8 Revision F of 15 May 1985

SunCore Reference Manual SunCore View Surfaces

}
close(fd) ;
/* Now have device type and know lf window system is running on it. */
if (devhaswindows)
switch{fbtype. fb_type)
{
case FBTYPE_SUN1BEW:
case FBTYPE_SUN2BW:
vsptr->dd = pixwindd;
break;
case FBTYPE_SUN1COLOR:
case FBTYPE_SUN2COLOR:
vsptr->dd = cgpixwindd;
breal;
default:
fprintf (stderr, "get_view_surface: %s is unknown fbtype\n",
dev) ;
return (1) ;

}

switch{fbtype. fb_type)
- {
case FBTYPE_SUN1BW:
vsptr->dd = bwldd;
break;
case FBTYPE_SUN2BW:
vsptr->dd = bw2dd:;
break;
case FBTYPE_SUNI1COLOR:
vsptr->dd = cgldd;
break;
case FBTYPE_SUN2COLCR:
vsptr->dd = cg2dd;
break;
default:
fprintf (stderr, "get_view_surface: %s is unknown fbtype\n",
dev) :
return (1) ;
}
/* Now SunCore device driver pointer is set up. */
if (tdevhaswindows || devfnd)
/*
If no window system on device or -d option was specified,
tell SunCore which device. Otherwise, let SunCore figure
out the device itself from WINDOW_GFX so the default
window will be used if desired.
*/
strncpy(vsptr->screenname, dev, DEVNAMESIZE);
return(0) ;

}

else

static int chkdevhaswindows (windowfd)
int windowfd;

{

Revision F of 15 May 1985 . B-9

SunCore View Surfaces SunCore Reference Manual

gtruct screen windowscreen;

win_screenget (windowfd, &windowscreen);

if (strcmp (devchk, windowscreen.scr_fbname) == 0)
{
/t
If this window is on the display device we are checking, set
the flag TRUE. Return TRUE to terminate the enumeration.
*
/
devhaswindows = TRUE;
return (TRUE) ;
}

. return (FALSE) ;

o}

B.4. Specifying a View Surface for Initialization

It is not necessary to specify every member of the vwsurf structure in order to initialize the view
surface. If only vwsurf.dd is specified, SunCore will try to obtain a view surface of the specified
type according to a default sequence. A statically allocated vwsurf structure may be set up to
use this default by initializing the structure via the DEFAULT_VWSURF macro defined in
usercore.h. This is a compile-time initialization. The user may exercise finer control over view
surfaces by setting other elements of the structure as described below. Any members which are
not specified by the user should be set to zero (the integer 0, the NULL pointer, or an empty
string, as appropriate).

B.4.1. View Surface Specification for Raw Devices

The default action for obtaining a new view surface of a raw device type is to try to open a
sequence of devices until one is found which is of the right type and is not already being used.
The sequence always starts with "/dev/fb". Then the following names are tried depending on
the view surface type:

bwidd - "/dev/bwoneO", "/dev/bwonel", ..., ¥ /dev/bwone9"
bw2dd - "/dev/bwtwoO", "/dev/bwtwol", ..., " /dev /bwtwod"
cgldd - "/dev/cgoneO”, " /dev/cgonel™, ..., "/dev/cgoned”
cg2dd - "/dev/cgtwoO", "/dev/cgtwol", ..., " /dav/cgtwod”

If none of the names in the sequence can be successfully opened and verified to be of the correct
type and not already in use, initialize_view_surface fails.

If the user wishes to specify a particular physical device for a view surface, he may set
vwsurf.screenname 1o be the device name of that device. The same steps will be taken to try to
open the device as for each name in the default sequence. However, if these steps fail, no other
names will be tried, and the initialization will fail.

vwsurf.cmapname and vwsurf.cmapsize are only used for color view surfaces. For cgldd and
cg2dd, vwsurf.cmapsize is set to 256. If vweurf.cmapname is specified, this name is used as the
pame of the color map; otherwise SunCore will provide a unique name.

B-10 Revision F of 15 May 1985

-

SunCore Reference Manual SunCore View Surfaces

No flags are currently defined for use with raw devices.

vwsurf.ptr provides a mechanism for passing optional initialization data to SunCore. In the
case of raw devices, one such option is currently available — the passing of information about
the adjacencies of physical screens. When the user creates a Suntools window environment on a
screen, he is also responsible for specifying the relationship of that screen to other screens also
running Suntools for purposes of tracking the mouse across multiple screens. The adja-
centscreens command may be used to do this (see the User’s Manual for the Sun UNIX System).
However, when a3 SunCore program initializes a new view surface on a raw screen, the user will
not previously have been able to inform the system of this adjacency because the new screen was
previously not in use. vwsurf.ptr may be used {o pass adjacency information for the new screen.

If vwsurf.ptr is not NULL, it should point to an array of character pointers. Only the first
pointer in this array will be used. It should point to a string which is the pathname of a file con-
taining information about the adjacencies of physical display devices. When the user sets up his
display devices on his desk he may create a file describing the layout of these devices. For exam-
ple, the following lines describe a system with two screens, the console frame buffer on the left
(which might be either a Sun-1 or a Sun-2 monochrome bitmap display) and a Sun color graphics
display on the right:

/dev/fb

R: /dev/cgoned
/dev/cgonel

L: /dev/fb

By convention, /dev/fb is the console frame buffer and /dev/cgone® is the first Sun color graph-
ics display on a system. For each display device in the system, there should be one line giving its
name, followed by several lines giving the directions and names of all adjacent screens. Thus all
four lines above are necessary, not just the first two. Directions may be indicated as R, L, T,
and B for right, left, top, and bottom, or as N, S, E, and W for north, south, east, and west.

B.4.2. View Surface Specification for Window Devices

The default action for obtaining a new view surface of type pizwindd or cgpizwindd is to first
test whether the window referred to by the Shell environment variable WINDOW_GFX is already
in use as a view surface. If not, a blanket window is inserted over the WINDOW_GFX window and
this blanket window becomes the view surface. I WINDOW_GFX has already been used in this
manner, the program /fusr/suntool/coretool is invoked to create a new window on the same phy-
sical display device as WINDOW_GFX. This new window becomes the view surface. Thus, if a
SunCore program 1s run from the tty subwindow of a Graphics Tool, the first default view sur-
face will occupy the display space covered by the graphics subwindow of the tool. Subsequent
default view surfaces will appear as graphics windows, each within a separate Core Tool on the
same screen as the Graphics Tool.

This default action may be circumvented in two ways. If vwsurf.flags has the VWSURF_NEWFLG
set, no attempt is made to take over WINDOW_GFX. A new window within a Core Tool is opened
on the same screen as WINDOW_GFX. If vwasurf.screenname is non-empty, a new window within
a Core Tool is opened on the screen specified by vwasurf.screenname, provided this device exists
and has a Suntools window environment running on it.

For view surfaces of type cgpizwindd, vwsurf.cmapsize and vwsurf.cmapname provide a means
of specifying and sharing color maps. The color map facilities of the Sun Window System are

Revision F of 15 May 1985 B-11

SunCore View Surfaces ‘ SunCore Reference Manual

used to comtrol color maps for cgpizwindd view surfaces (see the Programmer’s Reference
Manual for the Sun Window System for details). The user may specify a color map size of 0, in
which case a color map of length 2 will be used. Otherwise, vwsurf.cmapsize should be a power
of 2 between 2 and 258. The user may specify a null color map name, in which case SunCore
will provide a unique name. Otherwise, SunCore will check vwsurf.cmapname against the
names of the color maps for all windows currently displayed on the physical device on which the
new view surface is to appear. If a matching name is found, that color map will be used (even if
its size differs from vwsurf.cmapsize) and this map is shared among all windows on the device
which feference that name. If the user specified a null name or the specified name does not
match any current window’s color map name, a new color map is allocated with the given size.
" The indices for each cgpizwindd view surface’s color map run from 0 to vwaurf.cmapaize—1.
" The current release of the Sun Window System enforces the restrictions that entry 0 of the color
map i the background color for the desktop containing the window and entry
vwaurf.cmapsize—1 is the foreground color. The default background color for a desktop is
" white, and the default foreground color is black.

Currently, one optional string of initialization data may be passed to initialize_view_surface. If
vwsurf.ptr is non-NULL, it should point to an array of character pointers, only the first of which
will be used. The pointer should point to a string containing position and size information for a
Core Tool which may be started up to provide a window for the new view surface. (If the
WINDOW_GFX window is taken over by this new view surface and thus no Core Tool is started,
the string will be ignored.) The string should consist of pine integers, separated by commas:

"nl,nt,nw,nh,il,it, iw, ih, I"

nl, and nt give the initial position of the top left corner of the Core Tool in its normal form. nw
21d nh give the initial width and height. The numbers are given in screen coordinates, where {0,
0) is the upper left corner. il, it, iw, and ih give the same initial information for the iconic form
of the tool. I is a boolean flag which should be non-zero if the tool is to be started in its iconic
form.

B.5. Input Considerations

SunCore uses window system routines to obtain user input from the keyboard and mouse, no
matter what mix of raw device view surfaces and window device view surfaces the user has ini-
tialized. For purposes of input, a raw device view surface behaves just like a window device
view surface; it exists as a window within the window system’s data structures, and the user may
direct input to the window simply by positioning the mouse over it. The facts that window sys-
tem input is directed to different windows depending on the location of the mouse and that the
mouse position in the window system is reported in the coordinates of the window underlying the
mouse have implications for the SunCore input functions.

For SunCore programs which are invoked from a window within the Suntools window environ-
ment, whenever the KEYBOARD device is initialized, await_keyboard will return characters typed
when the mouse is located over any initialized view surface (belonging to a single user process)
or over the tty subwindow from which the program was started. For programs run from outside
a window environment, await_keyboard will return all characters typed on the keyboard, pro-
vided the KEYBOARD device is initialized.

The ACM Core specification defines input and output to be completely orthogonal functions.
Thus, it is possible to initialize a locator device and read from it without ever initializing a view

B-12 Revision F of 15 May 1985

SunCore Reference Manual ' SunCore View Surfaces

surface. SunCore uses the mouse as the LOCATOR, STROKE, PICK, VALUATOR, and BUTTON dev-
ices. The only way SunCore can obtain mouse position and button click information to emulate
these logica! devices is to take input from a window. SunCore will return valid data in response
to input requests for the LOCATOR, STROKE, PICK, and VALUATOR devices only when the user has
associated these devices with an initialized view surface via the set_echo_surface function.
Because all SunCore view surfaces are instantiations of generic view surface types, there is no
default echo surface for any input device. The set_ccho_surface function will accept a NULL
pointer as its surface_name argument to allow the programmer to end the association of an
input device with a view surface. Any input device may be echoed on any view surface indepen-
dently of any other input device.

The input functions await_any_button_get_locator_2, await_stroke_ 2, awast_pick, and
await_any_button_get_valuator will only use mouse input which the user directs to the window
which is the echo surface for the indicated LOCATOR, STROKE, PICK, or VALUATOR device. This
includes both position and button click input, so that the functions which are terminated by but-
ton clicks will terminate only when a button click occurs within the proper window (or a timeout
occurs) Which buttons are listened tois still controlled by individually initializing or terminat-
ing each BUTTON device.

The user may also use sef_echo_surface to choose from which window button clicks should be
reported for a BUTTON device when the await_button function is called; alternatively, if the echo
surface for a BUTTON device is NULL, awaif_button will check for button clicks from any view
surface associated with a LOCATOR, STROKE, PICK, or VALUATOR device.

Note that the resolution obtained from a LOCATOR, STROKE, PICK, or VALUATOR device is limited
by the width and/or height of its echo surface window, since mouse position information is pro-
vided by window system input routines in terms of window coordinates.

B.8. Notes on Window Device View Surfaces

Graphics primitives drawn on a view surface as part of a temporary segment normally remain
visible on the view surface until a new-frame action occurs. For view surfaces which are win-
dows within the Suntools window environment, several user actions can cause the view surface to
be redrawn. Such actions include stretching the enclosing tool, exposing a previously obscured
portion of the tool, and changing from the iconic form of the tool to the normal form. When the
view surface is redrawn in this manner, all output primitives which previously appeared as part
of temporary segments will disappear.

When a SunCore program is run from a Shell Tool, WINDOW_GFX is normally set to be the
tool’s tty subwindow. If this window is taken over and blanketed to serve as a view surface, out-
put directed to the tty subwindow (for example, stdout and stderr, including SunCore error
messages) will not be visible because the blanket window obscures the tty subwindow. When the
program terminates or the view surface is terminated, any portion of this output which has not
scrolled out of the subwindow will be visible. The fact that the tty subwindow is obscured also
means that there is no way to type characters to that window, so that stdin will never see any
input. However, if the KEYBOARD device is initialized, special characters, such as mterrupt and
suspend, typed to the blanket window will be recognized and will have their normal effect on the
user process,

Revision F of 15 May 1985 B-13

O

Appendix C

Alphabetical SunCore C Function Reference

This appendix contains an alphabetical list of SunCore functions and their arguments
definitions. SunCore programs written in € must contain the statement:

#include <usercore.h>

at the start of each compilation unit. Programs are then compiled and linked with a C compiler
command line like:

tutorial¥y ce files —lcore —lsunwindow —lpixrect —1m

C.1. Alphabetical List of C Interfaces

allocate_raster (raster)
struct {
int width, height, depth;
short #*bits; } *raster;

awalt_any_button(tima, button_number)
int time;
int *button_number;

awalt_any button_get_locator_2(time, locator_number, button_number, x, y)
int time;
int locator_number;
int tbutton_number;
float *x, *y;

awalt_any button_get_valuator (time, valuator_number, button_number, value)
int time;
int wvaluator_number;
int *pbutton_number;
float *value;

avait_keyboard(time, keyboard_number, input_string, length)
int time:
int keyboard_number;
char #*input_string;
int *length:

Revision F of 15 May 1985 C-1

Alphabetical SunCore C Function Reference SunCore Reference Manual

awalt_pick(time, pick_number, segment_name, pick_id)
int time; O
int pick_number;
int *segment_name;
int *pick_id;

awalt_stroke_2 (time, stroke_number, array_slze, x_array, y_array, number_polints)
int time;
int stroke_number;
int array_size;
float x_array[]:
float y_array[]l:
int *number_peints;

begin_batch_of_updates ()
close_retained_segment ()
close_temporary segment ()

create_retained_segment (segment_name)
int segment_name;

create_temporary_segment () (::)

define_color_indices (sur face_name, il, 12, red_array, green_array, blue_array)
struct vwsurf tsurface_name;
int 11, 1i2;
float red_array[}, green_array[], blue_array{].

delete_all_retained_segments ()

delete_retained_segment (segment_name)
int segment_name;

deselect_view_sur face (surface_name)
struct vwsurf *surface_name;

end_batch_of_updates ()

Revision F of 15 May 1985

SunCore Reference Manual Alphabetical SunCore C Function Reference

file_to_raster (fd, raster, map)
int f4;
struct {
int width, height, depth;
short *bits; } *raster; struct {
int type:
int nbytes;
char *data; } *map:

free_raster (raster)
struct {
int width, height, depth;
short *bits; } *raster:

get_mouse_state(device_class, device_number, x, y, buttons)
int device_class;
int device_number;
float *x, *y;
int *buttons;

get_raster(surface_nama, xmin, xmax, ymin, ymax, x, y, raster)
struct vwsurf f*surface_name;
float xmin, ymin, xmax, ymax;
int x, y:; struct {
int width, height, depth:
short *bits; } *raster;

initialize_core(output_level, input_level, dimension)
int output_level:;
int input_level;
int dimension;

initialize_device(device_class, device_number)
int device_class;
int device_number;

initialize_view_surface(surface_name, type)
struct vwsurf #*surface_name;
Int type;

inquire_charjust (just)
int *just;

inquire_charpath_2(dx, dy)
flocat *dx, *dy;

inquire_charpath_3(dx, dy, dz)
float *dx, *dy, *dz;

Revision F of 15 May 1985 C-3

Alphabetical SunCore C Function Reference SunCore Reference Manual

inquire_charprecision (charprecision)
int *charprecision;

inquire_charsize(charwidth, charheight)
float *charwidth, *charheight;

inquire_charspace (charspace)
float *charspace;

inquire_charup_2(dx, dy)
float *dx, *dy:;

inquire_charup_3(dx, dy, dz)
float *dx, *dy, *dz:

inquire_color_indices (surface_name, il, 12, red_array, green_array, blue_array)

struct vwsurf *surface_name;
int i1, i2;

float red_array[]:

float green_array[]:

float blue_array(]:

inquire_current_position_2(x, Y)
float *x, *y;

inquire_current_position 3(x, y, 2Z)
float *x, *y, *z;

inquire_detectability (detectability)
int *detectabllity;

inquire_echo (device_class, device_number, echo_type)
int device_class;
int device_number;
int *echo_type;

inquire_echo_position(device_class, device_number, echo_x, echo_y)
int devlice_class;
int device_number;
float *echo_x;
float *echo_y:

inquire_echo_surface (device_class, device_number, sur face_name)
int device_class;
int device_number;
struct vwsurf *surface_name;

C-4 C Revision F of 15 May 1985

-

O

SunCore Reference Manual Alphabetical SunCore C Function Reference

inquire_fill_index {(index)
int *index;

inquire_font (font)
int *font:

inquire_highlighting(highlighting)
int *highlighting;

inquire_image_ transformation_2{sx, sy, a, tx, ty)
float *sx, *sy;
float *a;
float *tx, *ty;

inquire_image_transformation_3(sx, sy, sz, ax, ay, az, tx, ty, tz)
float *sx, *sy, *sz;
float *ax, #*ay, *az;
fleat *tx, *ty, *tz;

inquire_ image_ transformation_type (type)
int *type:;

ingquire_image_translate_2(tx, ty)
float *tx, tty;

inquire_image_translate_3{tx, ty, tz)
float #*tx, *ty, #*tz:;

inquire_inverse_composite_matrix(array)
float array[4][4]:

inquire_keyboard (keyboard_number, buffer_size, initial_string,
initial_cursor_position)
int keyboard_number;
int t*buffer_size;
char *initial_string;
int *initial_ cursor_position;

inquire_line_index {index)
int *index:

inquire_linestyle (linestyle)
int *linestyle;

inquire_linewidth({linewidth)
float *linewidth;

Revision F of 15 May 1985 C-5

Alphabetical SunCore C Function Reference SunCore Reference Manual

inquire_locator_2(locator_number, x, ¥)
int locator_number; O
float *x;
float *y:

inquire_marker_symbol (symbol)
int #*symbol;

inquire_ndc_space_2{width, height)
float *width, *height;

inquire_ndc_space_3(width, height, depth)
float *width, *height, *depth;

1nqu1re_open_retained_segment(segment“name)
int *segment_name;

inquire_open,temporary_segment(open)
int *open;

inquire_pen (pen)
int *pen;

inquire_pick_id(pick_1id) @ i
int *pick._id;

-inquire_polygon_edge_style(style)
int *style;

inquire_polygon_interior_style(style)
int *style;

inquire_primitive_attributes(attributes)
struct {
int lineindx, fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwlidth;
int pen, font;
float charwidth, charhelght;
float charupx, charupy, charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality:
int marker, pickid, rasterop; } *attributes;

C-6 Revision F of 15 May 1985

:

SunCore Reference Manual Alphabetical SunCore C Function Reference

C::) inquire_projection(projection_type, dx, dy, dz)
int tprojection_type;
float *dx, *dy, *dz;

inquire_rasterop (rop)
int *rop;

inquire_retained_segment_names (array_size, name_array, number_cf_segments)
int array_size;
int name_array[]:
int #*number_of_segments;

inquire_retained_segment_surfaces (segment_name, array_size, view_surface_array,
number _of_sur faces)
int segment_name;
int array_size;
struct vwsurf view_surface_array[]:
int #*number_of_surfaces;

inquire_segment_detectability (segment_name, detectability)
int segment_name;
int *detectability;

‘ inquire_segment_highlighting(segment_name, highlighting)
int segment_name;

int *highlighting:;

inquire_segment_image_transformation_2 (segment_name, sx, sy, a, tx, ty)
int segment_name;
float *sx;
float *sy:
float *a;
float *tx:
float *ty;

inquire_segment_image_transformation_3 (segment_name, sx, sy, sz, ax, ay, az,
tx, ty. tz)
int segment_name;
float *sx;
float *sy:
float *sz;
float *ax;
float *ay;
float taz;
float *tx:
float *ty:
float *tz;

Revision F of 15 May 1985 C-7

Alphabetical SunCore C Function Reference SunCore Reference Manual

C-8

inquire_segment_image_transformation_type (segment_name, type)
int segment_name;
int #*type;

inquire_segment_image_translate_2({segment_name, tx, ty)

int segment_name;
float *tx;
float *ty:;

inquire_segment_image_translate_3(segment_name, tx, ty, tz)

int segment_name;
float *tx;
float *ty;
float *tz;

inquire_segment_visibility(segment_name, visibility)
int segment_name;
int *visibility;

inquire_stroke{stroke_number, buffer_size, distance, time)
int stroke_number;
int *buffer_size;
float *distance;
int *time;

inquire_text_extent_2 (string, dx, dy)
char #*string;
float *dx, *dy;

inquire_text_extent_3(string, dx, dy, dz)
char *string:;
float *dx, *dy, *dz;

inquire_text_index (index)
int *index;

inquire_valuator (valuator _number, initlal value, low, high)
int valuator_number;
fleat *initial_value;
float *low;
float *high;

inquire_view_depth(front_distance, back_distance)
float *front_distance, *back_distance;

inquire_view_plane_distance(view_distance)
float *view_distance;

Revision F of 15 May 1985

O

SunCore Reference Manual

inquire_view_plane_normal (dx, dy, dz)
float *dx, *dy, *dz;

‘inquire_view_reference_point{x, y, 2z)
float *x, *y, *z;

inquire_view_up_2(dx, dy)
float *dx, *dy:

inquire_view_up_3(dx, dy, dz)
float *dx, *dy, *dz;

inquire_viewing_contreol_parameters {windowclip,
int *windowclip;
int *frontclip:;
int *backclip;
int *type;

inquire_viewing_parameters (view_parameters)
struct {
fleat vwrefpt{3];
float vwplnorm(3]:
float viewdis;
float frontdis;
float backdils;
int projtype;
float projdir{3]:
float window[4]:
float vwupdir[3]:
float viewport[6); } *view_parameters;

inquire_viewport_2(xmin, xmax, ymin, ymax)

Alphabetical SunCore C Function Reference

frontclip, backclip, type)

float *xmin,
float #*ymin,

inquire_viewport_

float *xmin,
float #*ymin,
float #*zmin,

kxmax;
kymax;

3 (xmin, xmax, ymin, ymax, zmin, zmax)
*xmax;
*ymax;
*zmax;

inquire_visibility(visibility)
int *visibility;

inquire_window (umin, umax, vmin, vmax)
float *umin, *umax;
float *vmin, *vmax;

Revision F of 15 May 1985

C-9

Alphabetical SunCore C Function Reference

inquire_world_coordinate_matrix_2 (array)

float array{3][3]:

inquire_world_coordinate_matrix_3(array)

float array[4][4]:

line_abs_2(x, Y)
float %, y:

line_abs_3(x, vy, 2Z)
float x, ¥y, Z;

line_rel 2 {dx, dy)
float dx, dy:

line_rel_3(dx, dy. dz)
float dx, dy, dz;

map_ndc_to_world_2(ndcx, ndcy,
float ndcx, ndcy;
fleoat *wldx, *wldy:;

map_ndc_to_world_3(ndcx, ndcy,
float ndecx, ndcy, ndcz;
float *wldx, *wldy, *wldz;

map_world_to_nde_2 (wldx, wldy,
fleat wldx, widy;
float *ndex, *ndcy:

map_world_to_ndc_3(wldx, wldy,
float wldx, wldy, wldz;
float f#*ndcx, *ndcy, *ndcz;

marker_abs_2(x, y)
float x, ¥

marker_abs_3(x, ¥y, Z)
fleoat x, ¥, 2;

marker_rel_2 (dx, dy)
float dx, dy;

marker_rel_3(dx, dy, dz)
flecat dx, dy, dz;

wldx,

ndcz,

ndcx,

wldz,

SunCore Reference Manual

wldx, wldy, wldz)

ndcx, ndcy, ndcz)

Revision F of 15 May 1985

SunCore Reference Manual Alphabetical SunCore C Function Reference

O move_abs_2 (x, Yy)
float x, Yy:

move_abs_3(x, y. 2Z)
float x, y, z;

move_rel_2 (dx, dy)
float dx, 4dy:

move_rel_3(dx, dy, dz)
float dx, dy, dz;

nev_frame ()

polygon_abs_2 (x_array, y.array, n)
float x_array[], y_array[]:
int n;

polygon_abs_3 (x_array, y_array, z_array, n}
float x_array[], y_array{]. z_array[]:

int n;

polygon_abs_3 (x_array, y_array, z_array, n)
float x_array[}, y_array[]. z_arrayl]:
int n:

polygon_rel_2{dx_array, dy.array, n)
float dx_array[], dy_array([]:
int n;

polygon_rel_3(dx_array, dy.array, dz_array, n)
float dx_array[], dy_.array[], dz_array[]:
int n;

polyline_abs_2(x_array, y_array, n)
float x_array[], y_array[]:
int n;

polyline_abs_3(x_array, y_array, z_array, n)
float x_array[]), y.array[], z_array([]:
int n;

polyline_abs_3(x_array, y.array, z_array, n)
float x_array[], y_array[], z_array[]:
int n;

Revision F of 156 May 1985 C-11

Alphabetical SunCore C Function Reference SunCore Reference Manual

polyline rel_2(dx_array, dy_array, n)
fleat dx_array[}. dy_array[]:
int n;

polyline_rel_3(dx_array, dy.array, dz_array, n)
float dx_array[]. dy_array[], dz_array[]:
int n;

polymarker_abs_2({x_array, y_array, n)
float x_array[], y-array[]):
int n; :

polymarker_abs_3(x_array, y_array, z_array, n)
float x_array[], y_array([], z_array[]:;
int n;

polymarker_rel_2(dx_array, dy_array, n)
float dx_array[], dy_array{].
int n;

polymarker_rel_3{dx_array, dy_array, dz_array, n}
float dx_array[]., dy_array([]. dz_array[]:
int n;

print_error ("Your message”, error_number):
int error_number;

put_raster (raster)
struct {
int width, height, depth;
short *bits; } *raster;

raster_to_file(raster, map, fd, replicate)
struct {
int width, height, depth;
short *bits; } *raster; struct {
int type;
int nbytes;
char *data; } *map.
int f£d;
int replicate:;

rename_retained_segment (segment_name, newname)
int segment_name;
int newname;

report_most_recent_error (error_number)
int *error_number;

C-12 Revision F of 15 May 1985

SunCore Reference Manual

restore_segment (segment_name, filename)
int segment_name;
char *filename;

save_segment (segment_name, filename)
int segment_name;
char *filename;

select_view_surface{surface_name)
struct vwsurf tsurface_name;

set_back_plane_clipping{back_onfoff)
int back_on_off;

set_char just (just)
int just;

set_charpath_2 (dx, dy)
float dx, dy;

set_charpath_3(dx, dy, dz)
float dx, dy, dz;

set_charprecision (charprecision)
int charprecision;

set_charsize(charwidth, charheight)
float charwidth, charheight;

set_charspace (charspace)
float charspace;

set_charup_2{dx, dy)
float dx, dy:

set_charup_3(dx, dy, dz)
float dx, dy. dz;

set_coordinate_system_type (type)
int type:

set_detectability(detectabllity)
int detectability;

set_drag (mode)

int mode;

Revision F of 15 May 1985

Alphabetical SunCore C Function Reference

C-13

Alphabetical SunCore C Function Reference

set_echo (device_class, device_number, echo_type)

int device_class;
int device_number;
int echo_type;

SunCore Reference Manual

set_echo_group (device_class, device_numbaer_array, n, echo_type)

int device_class;

int device_number_array[]:
int n;

int echo_type:;

set_echo_position(device_class, device_number, echo_x, echo_y)

int device_class;
int device_number;
floeat echo_x;
float echo_y:

set_echo_surface (device_class, device_number, surface_name)

int device_class;
int device_number;
struct vwsurf *surface_name;

set_fill_index (index)
int index;

set_font (font)
int font;

set_front_plane_clipping(front_on_off)
int front_on_off;

set_highlighting(highlighting)
int highlighting;

set_image_transformation_z(sx, sy, a, tx, ty)
float sx, sY:
float a;
float tx, ty:

set_image_transformation_3{sx, sy, sz, ax, ay. az, tx, ty., tz)

float sx, sy, SZ.
float ax, ay, az:
float tx, ty, tz;

set_imaga;transformation_type(type)
int type;

C-14

Revision F of 15 May 1985

SunCore Reference Manual Alphabetical SunCore C Function Reference

set_image_translate_2 (tx, ty)
float tx, ty:

set_image_translate_3(tx, ty, tz)
float tx, ty, tz;

set_keyboard (keyboard_number, buffer_size, initial string,
initial_cursor_position)
int keyboard_number:
int buffer_size;
char *initial_string;
int initial_cursor_position;

set_light_direction(dx, dy, dz)
float dx, dy, dz;

set_line_index (index)
int index;

set_linestyle(linestyle)
int linestyle;

set_linewidth(linewidth)
float linewidth;

iset_locator_2(locator_number, x, y)
int locator_number;
float x;
fleat y;

set_marker_symbol (marker)
int marker;

set_ndc_space_2 (width, height)
float width, height;

set_ndc_space_3(width, height, depth)
float width, height, depth;

set_output_clipping(on_off)
int on_off;

set_pen (pen)
int pen;

Revision F of 15 May 1985 C-15

Alphabetical SunCore C Function Reference SunCore Reference Manual

set_pick(pick_number, aperture)
int pick_number;
float aperture;

set_pick_1id{pick_id)
int pick_id;

set_polygon_edge_style (style)
int style;

set_polygon_interior_style(style)
int style;

set_primitive_attributes (&PRIMATTS)

set_primitive_attributes (attributes)
struct {
int lineindx, fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth;
int pen, font;
float charwidth, charheight;
fleat charupx, charupy, charupz., charupw;
float charpathx, charpathy, charpathz, charpathw:;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality;
int marker, pickid, rasterop; } *attributes;

set_projection(projection, dx_proj, dy_proj, dz_proji)
int projection;
float dx_proj. dy_proj, dz_pro};

set_rasterop (rop)
int rop;

set_segment_detectability (segment_name, detectability)
int segment_name;
int detectability;

set_segment_highlighting(segment_name, highlighting)
int segment_name;
int highlighting:;

C-16 Revision F of 15 May 1985

SunCore Reference Manual Alphabetical SunCore C Function Reference

set_segment_image_transformation.2 (segment_name, sx, sy, a, tx, ty)
O int segment_name;

float sx:

float sy;

float a;

float tx:

float ty:

set_segment_image_transformation_3(segment_name, sx, sy, sz, ax, ay. az,
tx, ty., tz)
int segment_name;
fleat sx;
float sy;
float sz
float ax;
flcat ay;
float az;
float tx;
float ty:
float tz;

set_segment_image_translate_2 (segment_name, tx, ty)
int segment_name;
float tx;
float ty;

set_segment_image_translate_ 3 (segment_name, tx, ty, tz)
int segment_name;
float tx;
float ty.
fleocat tz;

set_segment_visiblility(segment_name, visibility)
int segment_name:
int visibility;

set_shading parameters (ambient, diffuse, specular, floocd, bump, hue, style)
float ambient;
flecat diffuse;
float specular;
float flocod;
float bump;
int hue;
int styla;

set_stroke (stroke_number, buffer_size, distance, time)
int stroke_number;
int buffer_size;

float distance;
O int time;

Revision F of 15 May 1985 C-17

Alphabetical SunCore C Function Reference

C-18

set_valuator(valuator_number, initial_value,

set_text_index (index)

int index;

int valuator_nhumber;
float initial_value;
float low;

float high;

set_vertex_indices (color_index_list, n)

int color_index_list([]:
int n;

set_vertex_normals (xlist, ylist, zlist, n)

float xlist[], ylist{], zlist([]:
int n;

set_view_depth(front_distance, back_distance)

float front_distance, back_distance;

set_view_plane_distance(distance)

float distance;

set_view_plane_normal (dx_norm, dy_norm, dz_norm)

float dx_norm, dy norm, dz_norm;

get_view_reference_point(x, y. z)

float x, v, Z;

set_view_up_2(dx, dy)

float dx, dy:

set_view_up_3(dx_up, dy.up, dz_up)

float dx_up, dy_up, dz_up;

set_viewing_parameters (view_parameters)

struct {

flocat vwrefpt[3]:
float vwplnorm[3]:
float viewdis;
float frontdis;
float backdis;

int projtype;
float projdir[3]:
float window[4];
float vwupdir[3]:
float viewport[6]: } *view_parameters;

SunCore Reference Manual

low, high})

Revision F of 15 May 1985

;
- :
1
!

SunCore Reference Manual Alphabetical SunCore C Function Reference

set_viewport_2(xmin, xmax, ymin, ymax)
float xmin, xmax;
float ymin, ymax:;

set_viewport _3(xmin, xmax, ymin, ymax, zmin, zmax)
float xmin, xmax;
float ymin, ymax;
fleat zmin, zmax;

set_visibillity(visibility)
int visibility;

set_window(umin, umax, vmin, vmax)
flecat umin, umax;
fleat vmin, vmax;

set_window_clipping{on_off)
int on_off;

set_world_coordinate_matrix_2 (array)
fleat array[3][3]:

set_world_coordinate_matrix_3 (array)
float array[4] {4]):

set_zbuffer_cut (surface_name, xlist, zlist, n}
struct vwsurf #*surface_name;
float xlist[], =zlist[]:
int n;

size_raster (surface_name, xmin, xmax, ymin, ymax, raster)
struct vwsurf *surface_name;
float xmin, xmax, ymin, ymax; struct {
int width, height, depth;
short tbits; } *raster;

terminate_core()

terminate_device (device _class, device_number)
int device_class:;
int devlice_number;

terminate_view_surface (surface_name)
struct vwsurf{ *surface_name;

text (string)
char #string:;

Revision F of 15 May 1985 C-19

|

Appendix D

Using SunCore with Fortran-77 Programs

All functions provided in SunCore may be called from FORTRAN-77 programs by linking them
with the fusr/lib/libcore77.a library. This is done by using the f77 compiler with a command
line such as:

tutorial¥gf77 —o grab grab.f -—lcore77 —lcore —lsunwindow —lpixrect

where grab.f is the FORTRAN source program. Note that fusr/lib/libcore.a must be linked
with the program (the —lcore option), and fusr/lib/libcore77.a must come before it (the
—~lcore?7 option).

Defined constants may be referenced in source programs by including
fusr/include/f17/usercore77.h In a FORTRAN program, this must be done via a source state-
ment like:

include "/usr/include/f77/usercore’77.h"

This include statement must be in each FORTRAN program unit which uses the defined constants,
not just once in each source program file. The default primitive attribute structure PRIMATTS
which is provided in usercore.h and is described in section 6.1.23 of this manual is not provided
in usercore77.h because of FORTRAN's restrictions on the ordering of specification statements
and data statements.

In the Sun release of FORTRAN-77, names are restricted to sixteen characters in length and may
not contain the underline character. For this reason, FORTRAN programs must use abbreviated
names to call the corresponding SunCore functions. The correspondence between the full Sun-
Core names and the FORTRAN names appears later in this appendix. In addition, FORTRAN-77
declarations for all SunCore functions appear at the end of this appendix.

D.1. Programming Tips

¢ The abbreviated names of the SunCore functions are less readable than the full length names
because the underline character cannot be used in the FORTRAN names. However, since FOR-
TRAN doesn’t distinguish between upper-case and lower-case letters in names, upper-case char-
acters can be used to improve readability. There is an example of this later in this appendix.

® Character strings passed from FORTRAN programs to SunCore cannot be longer than 256
characters.

® FORTRAN passes all arguments by reference. Although some SunCore functions receive argu-
ments by value, the FORTRAN programmer need not worry about this. The interface routines
in fusr/lib/libcore77.a handle this situation correctly, When in doubt, look at the FORTRAN

Revision F of 15 May 1985 D-1

—1lm

Using SunCore with Fortran-77 Programs SunCore Reference Manual

declarations for SunCore functions at the end of this appendix.

e SunCore uses pointers in some places. For instance, view surface structures contain pointers
to device driver functions. Also, the raster data type includes a pointer to an array of short’s
containing the raster data, There are no pointer types in FORTRAN, but there are ways to
handle all uses of pointers required to use SunCore. For view surface names, the following
fragments of C code and FORTRAN code do the same thing:

C Code FORTRAN Code

struct vwsurf vsurf = NULL_VWSURF; integer vsurf (VWSURFSIZE)

integer bwldd

int bwldd(): external bwldd

_) data vsurf /VWSURESIZE*QO/
vsurf.dd = bwldd; vsurf (DDINDEX) = loc (bwldd)

initialize_view_surface{&vsurf, FALSE); call Initial jzeVwsurf (vsurf, FALSE)

The constants VWSURFSIZE and DDINDEX are defined in usercore??.h. The constant VWSURF-
NEWFLG is also defined in usercore?7.h. See appendix B for more details on view surfaces.

As shown above, all required pointer manipulation can be done with the FORTRAN loc library
function, which returns the address of its argument as an integer.

SunCore function arguments which are pointers to structures can be declared as arrays in
FORTRAN. For example, the C and FORTRAN declarations of the SunCore raster structure
are shown below:

C Code FORTRAN Code

struct { : integer raster (4)
int width, height, depth;
short *bits;
} raster:

Then the following fragments of C and FORTRAN code are equivalent:

C Code FORTRAN Code
short data[l16]: integer*2 data(16)
raster.width = 16; raster (1) = 16
raster.height = 16 raster (2) = 16
raster.depth = 1; raster(3) = 1
raster .bits = data; raster (4) = loc{data)

e Some SunCore structures contain both int’s and float’s. For instance, the argument to
inquire_viewing_parameters contains both int’s and float’s. This can be handled in

D-2 Revision F of 15 May 1985

-

SunCore Reference Manual Using SunCore with Fortran-77 Programs

FORTRAN by declaring a REAL array and an INTEGER array which are made to share
storage by an EQUIVALENCE statement. Then following the call to the inquiry function, the
REAL components can be accessed by using the REAL array and the INTEGER components
accessed via the INTEGER array.

e Since FORTRAN does not distinguish between upper-case and lower-case letters in identifiers,
any FORTRAN program unit which includes the usercore77.h header file cannot use identifiers
with the same spelling as any constant defined in that header file (regardless of case).

¢ The filetoraster and rastertofile functions in C take an argument that is a UNIX}
file descriptor. The corresponding argument to the FORTRAN functions is a logical unit
number (LUN). This unit should be explicitly opened by using the FORTRAN open statement.
1/O to the opened file should be done only via the filetoraster and rastertofile
functions.

D.2. Example Program

This example is the FORTRAN equivalent of the very simple program for drawing a martini glass.

include "/usr/include/£77/usercore77.h"

integer vsurf (VWSURFSIZE)
integer bwldd
external bwldd
integer InitializeCore, InitializeVwsurf, SelectVwsurf
real glassdx(9), glassdy(9)
data glassdx /—10.0,9.0,0.0,—14.0,30.0,-14.0,0.0,9.0,-10.0/
data glassdy /0.0,1.0,19.0,15.0,0.0,-15.0,-19.0,-1.0, 0.0/
- data vsurf /VWSURESIZE*O/

vsur f (DDINDEX) = loc (bwldd)

if (InitializeCore{BASIC, NOINPUT, TWOD) .ne. O) call exit(l)
if (InitializeVwsurf (vsurf, FALSE) .ne. O) call exit(2)
1f (SelectVwsurf (vsurf) .na. O) call exit(3)

call SetViewport2{0.125, 0.875, 0.125, 0.75)

call SetWindow(—50.0, 50.0, —10.0, 80.0)

call CreateTempSeg()

call MoveAbs2 (0.0, 0.0)

call PolylineRel2(glassdx, glassdy, 9)

call MoveRel2(-12.0, 33.0)

call LineRel2(24.0, 0.0)

call CloseTempSeg()

call sleep (10)

call DeselectVwsurf (vsurf)

call TerminateCore()

end

t UNIX is a trademark of Bell Laboratories,

Revision F of 15 May 1985 D-3

Using SunCore with Fortran-77 Programs

D.3. Correspondence Between C Names and FORTRAN Names

SunCore Reference Manual

Correspondence Between C Names and FORTRAN Names

Long Name FORTRAN Equivalent
allocate_raster allocateraster
await_any_button awaitanybutton
await_any_button_get_locator_2 awtbuttongetloc2
await_any_button_get_valuator awtbuttongetval
await_keyboard awaitkeyboard
await_pick awaitpick
await_stroke_2 awaitstroke2
begin_batch_of_updates beginbatchupdate
close_retained_segment closeretainseg
close_temporary_segment closetempseg
create_retained_segment createretainseg
create_temporary_segment createtempseqg
define_color_indices defcolorindices
delete_all_retained_segments delallretainsegs
delete_retained_segment delretainsegment
deselect_view_sur face deselectvwsurf
‘end_batch_of_updates endbatchupdate
{file_to_raster filetoraster
free_raster freeraster
\get_mouse_state gatmousestate
get_raster getraster
initialize_core initializecore
initialize._device initializedevice
initialize_view_surface initializevwsurf
inquire_charjust ingcharjust
inquire_charpath_2 inqcharpath2
inquire_charpath_3 ingcharpath3
inquire_charprecision ingcharprecision
inquire_charsize inqcharsize

inquire_charspace inqcharspace
inquire_charup_2 ingcharup2
inquire_charup_3 ingcharup3
inquire_color_indices ingcolorindices
inquire_current_position_2 ingcurrpos2
inquire_current_position_3 ingcurrpos3
inquire_detectability ingdetectability
inquire_echo ingecho

Revision F of 15 May 1985

C

©

SunCore Reference Manual

Correspondence Between C Names and FORTRAN Names

Long Name FORTRAN Eguivalent
inquire_echo_position ingechoposition
inquire_echo_surface inqechosurface
inquire_fill_index ingfillindex
inquire_font ingfont
inquire_highlighting inghighlighting
inquire_image_transformation_2 ingimgtransform2
inquire_image_transformation_3 ingimgtransform3
inquire_image_transformation_type ingimgxformtype
inquire_image_translate_2 inqgimgtranslate2
inquire_image_translate_3 ingimgtranslate3
inquire_inverse_composite_matrix inginvcompmatrix
inquire_keyboard ingkeyboard
inquire_line_index inglineindex
‘inquire_linestyle inglinestyle
:inquiredlinewidth inglinewidth
Ainquire_locator_2 inglocator2
inquire_marker_symbol ingmarkersymbol
;inquire_ndc“space_z ingndcspace?2
inquire_ndc_space_3 ingndcspace3
inquire_open_retained_segment ingopenretainseg
inquire_open_temporary_segment ingopentempseg
inquire_pen ingpen
inquire_pick_id ingpickid
inquire_polygon_edge_style ingpolyedgestyle
inquire_polygon_interior_style ingpelyintrstyle
inquire_primitive_attributes ingprimattribs
inquire_projection ingprojection
inquire_rasterop inqrasterop
inquire_retained_segment_names ingqretainsegname
inquire_retained_segment_surfaces ingretainsegsurf
inquire_segment_detectability ingsegdetectable
inquire_segment_highlighting ingseghighlight
inquire_segment_image_transformation_2 ingsegimgxform2
inquire_segment_image_transformation_3 ingsegimgxform3
inquire_segment_image_transformation_type ingsegimgxfrmtyp
inquire_segment_image_translate_2 ingsegimgxlate2
inquire_segment_image_translate_3 ingsegimgxlate3
inquire_segment_visibility ingsegvisibility
inquire_stroks ingstroke

Revision F of 15 May 1985

Using SunCore with Fortran-77 Programs

Using SunCore with Fortran-77 Programs SunCore Reference Manual

Correspondence Between C Names and FORTRAN Names
Long Name FORTRAN Eguivalent
inquire_text_extent_2 inqtextextent2
inquire_text_extent_3 ingtextextent3
inquire_text_index ingtextindex
inquire_valuator ingvaluator
inquire_view_depth inqviewdepth
inquire_view_plane_distance ingviewplanedist
inquire_view_plane_normal ingviewplanenorm
inquire_view_reference_point ingviewrefpoint
inquire_view_up_2 ingviewup2
inquire_view_up_3 ingviewup3
inquire_viewing_control_parameters ingvwgcntrilparms
'inquire_viewing_parameters ingviewingparams
:inquire_viewport_z ingviewport2
‘inquire_viewport_3 ingviewport3
inquire_visibility ingvisibility
inquire_window ingwindow
inquire_world_coordinate_matrix_z ingworldmatrix2
inquire_world_coordinate_matrix_3 inqworldmatrix3
line_abs_2 lineabs2
line_abs_3 lineabs3
line_rel_2 linerel2
line_rel 3 linerel3
map_ndc_to_world_2 mapndctoworlda
map_ndc_to.world_3 mapndctoworld3
E
map_world_to_ndc_2 mapworldtondc2
map_world_to_ndc.3 mapworldtondc3
marker_abs_2 : markerabs2
marker_abs_3 markerabs3
marker_rel_2 markerrel2
marker_rel_3 markerrel3
move_abs_2 moveabs2
move_abs_3 moveabs3
move_rel_2 moverell
move_rel_3 moverel3
nev_frame newframe
polygeon_abs_2 pelygonabs2
polygon_abs_3 pelygonabs3
polygon_rel_2 pelygonrel2
pelygon_rel_3 polygonrel3

D-6 Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Fortran-77 Programs

@ Correspondence Between C Names and FORTRAN Names
Long Name FORTRAN Equivalent

pelyline_abs_2 polylineabs?2
polyline_abs_3 polylineabs3
pelyline_rel_2 polylinerel2
pelyline_rel_3 pelylinerel3
polymarker_abs_2 polymarkerabs2
pelymarker_abs_3 pelymarkerabs3
polymarker_rel_2 pelymarkerrel2
polymarker_rel_3 pelymarkerrel3
print_error printerror
put_raster putraster
raster_to_file rastertofile
rename_retained_segment renameretainsegqg
report_most_recent_error reportrecenterr
restore_segment restoresegment
save_segment savesegment
select_view_surface selectvwsurf
set_back_plane_clipping setbackclip
set_charjust setcharjust

O set_charpath_2 setcharpath2
set_charpath_3 setcharpath3
set_charprecision setcharprecision
set_charsize setcharsize
set_charspace setcharspace
set_charup_2 setcharup2
set_charup_3 setcharup3
set_.coordinate_system_type setcoordsystype
set_detectability setdetectability
set_drag setdrag
set_echo setecho
;set_echo_group : setechogroup
4
‘set_echo_position setechoposition
'set_echo_surface setechosurface
set_fill_index setfillindex
set_font setfont
set_front_plane_clipping setfrontclip
set_highlighting sethighlighting
set_image_transformation_2 setimgtransform2
set_image_transformation_3 setimgtransform3

C::) set_image_ transformation_type setimgxformtype
set_image_translate_2 setimgtranslate2

Revision F of 15 May 1985 D-7

Using SunCore with Fortran-77 Programs SunCore Reference Manual

Correspondence Between C Namees and FORTRAN Names
Long Name FORTRAN Equivalent

set_image_translate_3 setimgtranslate3
set_keyboard setkeyboard
set_light_direction setlightdirect
set_line_index setlineindex
set_linestyle setlinestyle
set_linewidth setlinewidth
set_locator_2 setlocator?2
set_marker_symbol setmarkersymbol
set_ndc_space_2 setndcspace?2
set_ndc_space_3 setndcspace3
set_output_clipping setoutputclip
set_pen setpen
set_pick setpick
set_pick id setpickid
set_polygon_edge_style setpolyedgestyle
set_polygon_interior_style setpolyintrstyle
set_primitive_attributes setprimattribs
set_projection setprojection
set_rasterop setrasterop
set_segment_detectability setsegdetectable
set_segment_highlighting setseghighlight
set_segment_image_transformation_2 setsegimgxform2
set_segment_image_transformation_3 setsegimgxform3
set_segment_image_translate_2 setsegimgxlate2
‘set_segment_image_translate_3 setsegimgxlate3
set_segment_visibility setsegvisibility
;set_shading_parameters setshadingparams
set_stroke setstroke
set_text_index settextindex
set_valuator setvaluator
set_vertex_indices setvertexindices
set_vertex_normals setvertexnormals
set_view_depth setviewdepth
set_view_plane_distance setviewplanedist
set_view_plane_normal setviewplanenorm
set_view_reference_point setviewrefpoint
set_viewport_2 setviewport2
set_viewport_3 setviewport3 i
set_view_up_2 setviewup2
set_view_up_3 setviewup3

D-8 Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Fortran-77 Programs

Ci) Correspondence Between C Names and FORTRAN Names

Long Name FORTRAN Eguivalent
set_viewing_parameters setviewingparams
set_visibility setvisibility
set_window setwindow
set_window_clipping setwindowclip
set_world_coordinate_matrix_2 setwor ldmatrix2
set_world_coordinate_matrix_3 setworldmatrix3
set_zbuffer_cut setzbuf fercut
size_raster sizeraster
terminate_core terminatecore
terminate_device terminatedevice
terminate_view_surface terminatevwsurf
text text

D.4. FORTRAN Interfaces to SunCore

Note: Although all SunCore procedures are declared here as functions, each may also be called as
a subroutine if the user does not want to check the returned value,

integer function allocateraster (raster)
integer raster (4).

‘integer function awaitanybutton(time, buttonnum)
integer time, buttonnum

integer function awtbuttongetloc2(time, locatornum, buttonnum, x, Y)
integer time, locatornum, buttonnum
real x, y

integer function awtbuttongetval (time,valuatornum,buttennum,value)
integer time, valuatornum, buttonnum
real value

integer function awaltkeyboard(time, keyboardnum, inputstring, length)
integer time, keyboardnum

character* (%) inputstring

integer length

integer function awaitpick(time, picknum, segname, pickid)
integer time, picknum, segname, pickid

Revision F of 15 May 1985 D-9

Using SunCore with Fortran-77 Programs SunCore Reference Manual

D-10

integer function awaitstroke2(time, strokenum, arraysize, xarray, yarray, n)
integer time, strokenum, arraysize

real xarray, yarray

integer n

integer function beginbatchupdate ()
integer function closeretainseg()
integer function closetempseg()

integer function createretainseg (segname)
integer segname

integer function createtempseg()

integer function defcolorindices (sur facename, i1, 12, red, green, blue)
‘integer surfacename (*)

Ainteger 11, 12

real red(*), green(*), blue(*)

‘integer function delallretainsegs()

integer function delretainsegment (segname)
integer segname

integer function deselectvwsurf (sur facename)
integer surfacename (*)

integer function endbatchupdate ()

integer function filetoraster (rasfid, raster, map)
integer rasfid

integer raster (4)

integer map (3)

integer function freeraster (raster)
integer raster (4)

integer function getmousestate (devclass, devnum, X, Y. buttons)
integer devclass, devnum

real x, y

integer buttons

Revision F of 15 May 1985

-

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function getraster (surfacename, xmin, xmax, ymin, ymax, xd, yd, raster)
integer surfacename (*)

real xmin, xmax, ymin, ymax

integer xd, yd

integer raster (4)

integer function initializecore (outputlevel, inputlevel, dimension)
integer outputlevel, lnputlevel, dimension

integer function initializedevice(deviceclass, devicenum)
integer deviceclass, devicenum

integer function initializevwsurf (surfacename, type)
integer surfacename (*)
integer type

integer function inqcharjust(just)
integer just

integer function ingcharpath2{dx, dy)
real dx, dy

integer function ingcharpath3(dx, dy, dz)
real dx, dy, dz

integer function ingcharprecision(charprecision)
integer charprecisicn

integer function ingcharsize(charwidth, charheight)
real charwidth, charheight

integer function ingcharspace (charspace)
real charspace

integer function ingcharup2(dx, dy)
real dx, dy

integer function inqgcharup3(dx, dy, dz)
real dx, dy, dz

integer function ingcolorindices (surfacename, il, i2, red, green, blue)
integer surfacename (*)

integer 11, 1i2

real red(*), green(*), blue(*)

Revision F of 15 May 1985 D-11

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function inqcurrpos2(x, y)
real x, y

integer function inqcurrpos3(x, y. z)
real x, ¥y, 2

‘integer function inqdetectability(detectability)
integer detectability

integer function inqecho (deviceclass, devicenum, echotype)
integer deviceclass, devicenum, echotype

integer function ingechoposition(deviceclass, devicenum, echox, echoy)
integer deviceclass, devicenum
real echox, echoy

integer function ingechosurface (deviceclass, devicenum, surfacename)
integer deviceclass, devicenum
integer surfacename(*)

integer function ingfillindex{index)
integer index

integer function inqgfont (font)
integer font

integer function inghighlighting(highlighting)
integer highlighting

integer function ingimgtransform2(sx, sy. a, tx, ty)
real sx, sy, a, tx, ty

integer function ingimgtransform3(sx, sy, sz, ax, ay., az, tx, ty, tz)
real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function ingimgxformtype (type)
integer type

integer function ingimgtranslate2(tx, ty)
real tx, ty

integer function inqimgtranslate3(tx, ty, tz)
real tx, ty, tz

integer function inginvcompmatrix(array)
real array(4,4)

D-12 Revision F of 15 May 1985

integer function ingkeyboard (keyboardnum, buffersize, initstring, initcursor)

SunCore Reference Manual

Using SunCore with Fortran-77 Programs

integer keybocardnum, buffersize
character* (*) initstring
integer initcursor

integer
integer

integer
integer

function
index

function

linestyle

inqlineindex (index)

inglinestyle{linestyle)

integer function inglinewidth{linewidth)
real linewldth

integer
integer
real x,

Integer
integer

integer function inqndcspace2(width, height)

function inglocator2(locatornum, X, Y)

locatornum

Y

function

symbol

ingmarkersymbol {(symbol)

real width, height

integer function inqndespace3(wldth, height, depth)

real width, height, depth

integer
integer

integer
integer

integer
integer

integer
integer

integer
integer

integer
integer

function
segname

function
open

function
pen

function
pickid

function
style

function
style

Revision F of 15 May 1985

inqopenretainseg (segname)

ingqopentempseg (cpen)

ingpen (pen)

ingpickid{pickid)

ingpolyedgestyle (style)

ingpolyintrstyle(style)

D-13

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function ingprimattribs(primattr)
integer primattr (28)

Note: The actual argument in the calling program corresponding to primatir should be an array
which can be referenced both as a real array and as an integer array in order to access both
integer valued and real valued primitive attributes. This can be done using the equivalence
statement.

integer function ingprojection(projection, dxproj, dyproj, dzproj)
integer projection real dxproj, dyproj, dzpro]

integer function ingrasterop (rop)
integer rop

integer function ingretainsegname (arraysize, namearray, numberofsegments)
integer arraysize, namearray(*)., numberofsegments

integer function ingretainsegsurf(segname, arraysize, vwsur farray, numsurf)

integer segname, arraysize
integer vwsurfarray(*)
integer numsurf

Note: arraysize should give the number of view surface structures which can be held in vwsurfar-
ray. Each structure requires VWSURFSIZE elements of vwsurfarray.

integer function ingsegdetectable (segname, detectability)
integer segname, detectabllity

integer function ingseghighlight (segname, highlighting)
integer segname, highlighting

integer functlion ingsegimgxform2 (segname, sx, sy, a, tx, ty)
integer segname
real sx, sy, a, tx, ty

integer function ingsegimgxform3(segname, sx, sy, sz, ax, ay, az, tx, ty, tz)

integer segname
real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function ingsegimgxfrmtyp (segname, type)
integer segname, type

integer function ingsegimgxlate2 (segname, tx, ty)
integer segname
real tx, ty

D-14 Revision F of 15 May 1985

C

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function ingsegimgxlate3(segname, tx, ty, tz)
integer segname
real tx, ty, tz

integer function lngsegvisibility(segname, visibility)
integer segname, visibility

integer function ingstroke(strokenum, bufsiza, dist, time)
integer strokenum, bufsize

real dist

integer time

integer function ingtextextent2(string, dx, dy)
character* (*) string
real dx, dy

integer function inqgtextextent3(string, dx, dy, dz)
character* (*) string
real dx, dy, dz

integer function ingtextindex(index)
integer index

integer function ingvaluator (valuatornum, initialvalue, low, high)
integer valuatornum
real initialvalue, low, high

integer function inqviewdepth(frontdistance, backdistance)
real frontdistance, backdistance

integer function ingviewplanedist (viewdistance)
real viewdistance

integer function ingviewplanenorm{dxnorm, dynorm, dznorm)
real dxnorm, dynorm, dznorm

integer function ingviewrefpoint(x, y. z)
real x, y, z

integer function inqviewup2(dxup, dyup)
real dxup, dyup

integer function ingviewup3(dxup, dyup, dzup)
real dxup, dyup, dzup

Revision F of 15 May 1985 D-15

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function ingvwgentrlparms (windowclip, frontelip, backclip, type)
integer windowclip, frontclip, backelip, type

integer function ingviewingparams (viewparams)
real viewparams (26)

Note: The actual argument in the calling program corresponding to viewparams should be an
array which can be referenced both as a real array and as an integer array in order to access
both integer valued and real valued viewing parameters. This can be done using the
equivalence statement.

integer function ingviewport2(xmin, xmax, ymin, ymax)
real xmin, xmax, ymin, ymax

integer function ingviewport3{xmin, xmax, ymin, ymax, zmin, zmax)
real xmin, xmax, ymin, ymax, zmin, zmax

integer function ingvisibility(visibility)
integer visibility

integer function ingwindow(umin, umax, vmin, vmax)
real umin, umax, vmin, vmax

integer function ingworldmatrix2 (array)
real array(3,3)

integer function ingworldmatrix3(array)
real array(4,4)

integer function lineabs2(x, Y)
real x, y

integer function lineabs3(x, y. z)
real %, Y., 2

integer function linerel2(dx, 4dy)
real dx, dy

integer function linerel3(dx, dy, dz)
real dx, dy, dz

integer function mapndctoworld2(ndcx, ndcy, wldx, wldy)
real ndcx, ndcy, wldx, wldy

D-16 Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function mapndctoworld3(ndcx, ndcy, ndcz, wldx, wldy, wldz)
real ndcx, ndcy, ndcz, wldx, wldy, wldz

integer function mapworldtondc2 (wldx, wldy, ndcx, ndcy)
roal wldx, wldy, ndcx, ndcy

integer function mapworldtondc3(wldx, wldy, wldz, ndex, ndcy, ndez)
real wldx, wldy, wldz, ndex, ndcy, ndecz

integer function markerabs2(x, y)
real x, ¥y

integer function markerabs3{x, y. z)
real x, y, z

integer function markerrel2{dx, dy)
real dx, dy

integer function markerrel3d(dx, dy, dz)
real dx, dy, dz

integer function moveabs2(x, y)
real x, y

integer function moveabs3(x, y, z)
real x, y, z

integer function moverel2 (dx, dy)
real dx, dy

integer function moverel3(dx, dy, dz)
real dx, dy, dz

integer function newframe ()

integer function polygonabs2 (xarray, yarray., n)
real xarray(*), yarray(*)
integer n

integer function polygonabs3(xarray, yarray, zarray, n)
real xarray(*). yarray(*), zarray(*)
integer n

integer function polygonrel2(dxarray, dyarray, n)
real dxarray(*), dyarray(*)
integer n

Revision F of 15 May 1985

Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function polygonrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(*), dzarray(*)
integer n

integer function polylineabs2{xarray, yarray, n)
real xarray(*), yarray(*)
integer n

integer function polylineabs3(xarray, yarray, zarray. n)
real xarray(*), yarray(*). zarray(*)
integer n

integer function polylinerel2(dxarray. dyarray, n)
real dxarray(*), dyarray(*)
integer n

integer function polylinerel3{dxarray, dyarray, dzarray, n)
real dxarray(*). dyarray(*), dzarray(*)
integer n

integer function polymarkerabs2(xarray, yarray, n})

real xarray(*), yarray(*)
integer n

integer function polymarkerabs3(xarray, yarray, zarray, n)
real xarray(*), yarray(*), zarray(*)
integer n

integer functlon polymarkerrel2 (dxarray, dyarray. n)
real dxarray(*), dyarray(*)
integer n

integer function polymarkerrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(*), dzarray(*)
integer n

integer function printerror (message, errornum)
charactert (*) message
integer errornum

integer function putraster (raster)
integer raster (4)

integer function rastertofile(raster, map, rasfid, n)
integer raster (4)

integer map (3)

integer rasfid, n

D-18 Revision F of 15 May 1985

SunCore Reference Manual

integer function renameretainseg(segname, newname)
integer segname, newname

integer function reportrecenterr (errornum)
integer errornum

integer function restoresegment (segname, filename}
integer segname
character?* (*) filename

integer function savesegment (segname, filename)
integer segname
character* (*} filename

integer function selectvwsurf {surfacename)
integer surfacename (*)

integer function setbackclip (cnoff)
integer onoff

integer function setcharjust (just)
integer just

integer function setcharpath2 (dx, dy)
vreal dx, dy

integer function setcharpath3(dx, dy, dz)
real dx, dy, dz

integer function setcharprecision{charprecision)
integer charprecision

integer function setcharsize{charwidth, charheight)
real charwidth, charheight

integer function setcharspace (charspace)
real charspace

integer function setcharup2(dx, dy)
real dx, dy

integer function setcharup3(dx, dy, dz)
real dx, dy, dz

integer function setcoordsystype (type)
integer type

Revision F of 15 May 1985

Using SunCore with Fortran-77 Programs

D-19

Using SunCore with Fortran-77 Programs SunCore Reference Manual

D-20

integer function setdetectability(detectabllity)
integer detectability

integer function setdrag(mode)
integer mode

integer function setecho{deviceclass, devicenum, echotype)
integer deviceclass, devicenum, echotype

integer function setechogroup (deviceclass, devicenumarray, n, echotype)
integer deviceclass, devicenumarray(*). n, echotypa

integer function setechoposition(deviceclass, devicenum, echox, echoy)

‘integer deviceclass, devicenum

real echox, echoy

integer function setechosurface (deviceclass, devicenum, surfacename)
integer deviceclass, devicenum

integer surfacename (*)

integer function setflllindex (index)
integer index

integer function setfont (font)
integer font

integer function setfrontclip (cnoff)
integer oncff

integer function sethighlighting(highlighting)
integer highlighting

integer function setimgtransform2(sx, sy, a, tx, ty)
real sx, sy, a, tx, ty

integer function setimgtransform3(sx, sy, sz, ax, ay. az, tx, ty., tz)
real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function setimgxformtype (type)
integer type

integer function setimgtranslate2 (tx, ty)
real tx, ty

integer function setimgtranslate3d(tx, ty, tz)
real tx, ty, tz

Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer function setkeyboard (keyboardnum, buffersize, initstring, initcursor)
integer keyboardnum, buffersize
character®* (*) lnitstring
integer initcursor

integer function setlightdirect(dx, dy, dz)
real dx, dy, dz

integer function setlineindex (index)
integer index

integer function setlinestyle(linestyle)
integer linestyle

integer function setlinewidth(linewidth)
real linewidth

integer function setlocator2{lccatornum, x, v)
integer locatornum
real x, y

integer function setmarkersymbol (symbol)

' integer symbol
i)

integer function setndcspace2(width, height)
real width, height

integer function setndcspace3d(width, height, depth)
real width, height, depth

integer function setoutputclip(ocnoff)
integer onoff

integer function setpen(pen)
integer pen

integer function setpick(picknum, aperture)
integer picknum
real aperture

integer function setpickid (pickid)
integer pickid

integer function setpolyedgestyle(style)

integer style

Revision F of 15 May 1985 . D-21

. Using SunCore with Fortran-77 Programs SunCore Reference Manual

integer function setpolyintrstyle(style)
integer style

integer function setprimattribs (primattr)
integer primattr (28)

Note: The actual argument in the calling program corresponding to primatir should be an array
which can be referenced both as a real array and as an integer array in order to acceds both
integer valued and real valued primitive attributes. This can be done using the equivalence
statement.

integer function setprojection(projection, dxproj, dyproj, dzproj)
integer projection
real dxproj, dyproj, dzproj

integer function setrastercp (rop)
integer rop

integer function setsegdetectable(segname, detectability)
integer segname, detectablility

integer function setseghighlight (segname, highlighting)
integer segname, highlighting O

integer function setsegimgxform2 (segname, sx, sy, a, tx, ty)
integer segname
real sx, sy, a, tx, ty

integer function setsegimgxform3 (segname, sx, sy, sz, ax, ay, az, tx, ty, tz)
integer segname
real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function setsegimgxlate2 (segname, tx, ty)
integer segname
real tx, ty

integer function setsegimgxlate3(segname, tx, ty, tz)
integer segname
real tx, ty, tz

integer function setsegvisibility(segname, visibility)
integer segname, visibillty

integer function setshadingparams(ambient, diffuse, specular, flcod, bump, hue, sty
real ambient, diffuse, specular, flood, bump

integer hue, style o

D-22 Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Fortran-77 Programs

integer functlon setstroke{strokenum, buffersize, distance, time)
integer strokenum, bufferslze

real distance

integer time

integer function settextindex (index)
integer index

integer function setvaluator {valuatornum, initialvalue, low, high)
integer valuatornum
real initialvalue, low, high

integer function setvertexindices(colorindexlist, n)
integer colorindexlist(*), n

integer function setvertexnormals(xlist, ylist, zlist, n)
real xlist(*), ylist(*), zlist(*)
integer n

integer function setviewdepth(frontdistance, backdistance)
real frontdistance, backdistance

integer function setviewplanedist(distance)
real distance

integer function setviewplanenorm(dxnorm, dynorm, dznorm)
real dxnorm, dynorm, dznorm

integer function setviewport2(xmin, xmax, ymin, ymax)
real xmin, xmax, ymin, ymax

integer function setviewport3(xmin, xmax, ymin, ymax, zmin, zmax)
real xmin, xmax, ymin, ymax, zmin, zmax

integer function setviewrefpoint(x, y. z)
real x, vy, z

integer function setviewup2(dx, dy)
real dx, dy

integer function setviewup3(dx, dy, dz)
real dx, dy, dz

integer function setviewingparams (viewparams)
real viewparams (26)

Revision F of 15 May 1985

D-23

Using SunCore with Fortran-77 Programs SunCore Reference Manual

Note: The actual argument in the calling program corresponding to viewparams should be an
array which can be referenced both as a real array and as an integer array in order to access
both integer valued and real valued viewing parameters. This can be done using the
equivalence statement.

integer function setvisibility(visibility)
integer visibility

integer function setwindow (umin, umax, vmin, vmax)
real umin, umax, vmin, vmax

integer function setwindowclip (onoff)
integer onoff

integer function setworldmatrix2 (array)
real array(3.3)

integer function setworldmatrix3(array)
real array{4,4) '

integer function setzbuffercut (surfacename, xlist, zlist, n)
integer surfacename (*)

real xlist(*), zlist(*)

integer n

integer function sizeraster (surfacename, xmin, xmax, ymin, ymax, raster)
integer surfacename (*)

real xmin, xmax, ymin, ymax

integer raster (4)

integer function terminatecore()

integer function terminatedevice(deviceclass, devicenum)
integer deviceclass, devicenum

integer function terminatevwsurf(surfacename)
integer surfacename(*)

integer function text(string)
character?® (*) string

D-24 Revision F of 15 May 1985

Appendix E

Using SunCore with Pascal Programs

All functions provided in SunCore may be called from Pascal programs by linking them with
the fusr/lib/libcorepas.a library by using the Pascal compiler with a command line of the form:

tutorial¥ pc -0 grab grab.p -lcorepas -lcore —lsunwindow —lpixrect

where grab.p is the Pascal source program. Note that fusr/lib/libcore.a must be linked with
the program (the —lcore option), and fusr/lib/libcorepas.a must come before it (the —lcore-
pas option).

E.1. Programming Requirements

The files typedefspas.h, usercorepas.h, devincpas.h and sunpas.h from the
Jusr/include/pascal directory must be included in the user’s source code to provide the neces-
sary declarations for the Pascal interface to SunCore. Pascal programs which call SunCore
functions must place these include files in the most global declaration section of the program:

program example (input,output)

#include '/usr/include/pascal/typedefspas.h’
#include 'susr/include/pascal//usercorepas.h'’

var
{user declarations}

#include 'Sfusr/include/pascal/devincpas.h'
#include 'Susr/include/pascal/sunpas.h’'

If the Pascal program is composed of separately compiled files, these include statements must be
in each Pascal file which uses SunCore functions and the corresponding defined constants.
Defined constants for SunCore (see section on Useful Constants in the introduction to this
manual) are set in the file /usr/include/pascalf/usercorepas.h. The default primitive attribute
structure PRIMATTS provided in wusercore.h and described in the section describing
set_primitive_attributes is not provided in usercorepas.h.

The Sun release of Pascal does not support the passing of variable length arrays as arguments in
function or procedure calls. Therefore, fixed length arrays which are compatible with the
SunCore-Pascal interface are declared as predefined types in the typedefspas.h file (see the
Declarations section of this appendix). The length of these arrays in 256. The length of

Revision F of 15 May 1985 E-1

—-1m

Using SunCore with Pascal Programs SunCore Reference Manual

character strings passed from Pascal programs to SunCore must also be 256 characters.

In the Sun release of Pascal, function names may not contain the underline character (_). There-
fore, Pascal programs use abbreviated names to call the corresponding SunCore functions. The
correspondence between the full SunCore names and the Pascal names appears in the Filnction
Declarations section of this appendix. To provide a mechanism for returning the status of calls
to SunCore routines, all SunCore routines must be called as functions from Pascal. Finally,
although most SunCore functions use floats (32-bit reals), Pascal uses 84-bit reals. However, the
Pascal programmer is only required to provide reals. SunCore functions which have structures
as their arguments have corresponding predefined types in Pascal (see the Type Declarations
section of this appendix).

E.1.1. Routines Using View Surface Names

View surface names in SunCore are structures containing pointers to device driver routines.
The device driver names are supplied by the include file devincpas.h. The user may then simply
use one of these names:

bwldd for the Sun-1 monochrome display,

bw2dd for the Sun-2 monochrome display,

cgldd for the Sun-1 color display,

cg2dd for the Sun-2 color display,

pixwindd for windows on the Sun-1 monochrome display,

cgpixwindd for windows on a color display.

The pasloc function (provided in the SunCore-Pascal interface) transforms the function
corresponding to the device driver into an integer which can then be inserted in the appropriate
place in the device driver structure (see following example).

C Code Pascal Code

struct vwsurf dsurf = NULL_VWSURE; var
int bwidd(): dsurf:vwsurf;
tstr:vwsurfst;

tstr := ' !';

dsurf.dd = bwldd; dsurf.dd := pasloc(bwldd):
dsurf.screenname := tstr;
dsur f . windowname tstr.
dsurf.windowfd :
dsurf.instance
dsurf.cmapsize
dsurf.cmapname :
dsurf.flags := O;
dsurf.ptr := 0;

’

oo
coo !

tstr;

jnitialize_view_surface (&dsurf, FALSE); x := InitializeVwsurf (dsurf, FALSE);

Assigning a literal string of two spaces (blanks) to the tstr variable will initialize the character
array to all spaces.

E-2 Revision F of 15 May 1985

-

SunCore Reference Mannal Using SunCore with Pascal Programs

E.1.2. Routines Using Rasters and Colormaps

For uses of SunCore functions which have rasters or colormaps as arguments which do not
involve arithmetic direct manipulation by the programmer (for example, writing a raster to a
file), the following restrictions on the functions do not apply and the programmer is only required
to call the function. SunCore raster and colormap structures contain pointers to variable
length data (that is, dynamic arrays). The SunCore-Pascal interface declares these varaibles as
integers.

Pascal programmers wishing to alter the contents of the colormap or raster data within a pro-
gram can write a C function which uses the pointer value returned in Pascal to copy the infor-
mation into a fixed-length array. Arithmetic operations can then be performed on the data using
conventional Pascal statements. The programmer can then write another C function to copy
the information back into the array pointed to by the pointer returned by the SunCore-Pascal
interface. These C functions are not provided because the size of the fixed-length array will
vary greatly among different applications. Therefore, the individual Pascal programmer must
decide how large an array to declare for each application.

E.2. Example Program

The use of the SunCore-Pascal interface is illustrated by showing the text of a program for
drawing the martini glass used in previous tutorial examples.

Revision F of 15 May 1985 E-3

Using SunCore with Pascal Programs SunCore Reference Manual

E-4

program martiniglass (input,output);

#include '/usr/include/pascal/usercorepas.h’;
#include '/usr/include/pascal/typedefspas.h';

var

glassdx, glassdy: parr {type parr is an array of reals of
length 256 declared in typedefs.h};

x:integer;

dsurf:vwsurf;

tstr:vsurfst;

function sleep (x:integer) :integer; external;

#include - ' /usr/include/pascal/sunpas.h’;
#include 'fusr/include/pascal/devincpas.h';

procedure loaddata;

begin]
glassdx[1] := -10.0; glassdy[1l] := 0.0;
glassdx[2] := 9.0; glassdy[2] := 1.0;
glassdx[3] := 0.0; glassdy[3] := 19.0;

glassdx[4] := —-14.0; glassdy[4] :=1
glassdx[5] := 30.0; glassdy[5] := 0.0;
glassdx[6] := —14.0; glassdy[6] :=

glassdx[7] := 0.0; glassdy[7] := =-19.0;
glassdx{8] := 9.0; glassdy[8] := —1.0:
glassdx{9] := —10.0; glassdy[9] := 0.0;

end;

begin {main program}
LI

tstr
dsur
dsur

dsurf.windowfd :

f.screenname := tstr;
f.windowname := tstr;
o)

dsurf.dd := pasloc(bwldd};

dsurf.instance :=
dsurf.cmapsize :=

.
,
.
’

o)
o

dsurf.cmapname := tstr;
dsurf.flags := O;
dsurf.charptr := 0;

1f (initializecore(BASIC, NOINPUT, TWOD) <> 0) then
writeln (' error 1')
else
1f (initlallzevwsurf {(dsurf, FALSE) <> 0) then
writeln (' error 2')
else
if (selectvwsurf(dsurf) <> 0) then
writeln (' error 3')

else
x := setviewport2{0.125, 0.875, 0.125, 0.75):
x := setwindow(—50.0, 50.0, -10.0, 80.0);
X := createtempseqg;
X := moveabs2 (0.0, 0.0}
loaddata;

X := polylinerel2(glassdx, glassdy,9);

Revision F of 15 May 1985

SunCore Reference Manual

end.

Revision F of 15 May 1985

KX MM KN

Using SunCore with Pascal Programs

moverel2(—12.0, 33.0);
linerel2(24.0, 0.0):
closetempseqg:;

sleep (10) .
deselectvwsurf (dsurf);
terminatecore;

E-5

Using SunCore with Pascal Programs

SunCore Reference Manual

E.3. Correspondence Between C Names and Pascal Names

Correspondence Between C Names and Pascal Names

SunCore Name Pascal Equsvalent
allocate_raster allocateraster
await_any_button awaitanybutton
await_any_button_get_locator_2 awtbuttongetloc2
await_any_button_get_valuator awtbuttongetval
await_keyboard avaitkeyboard
await_pick awaitpick
await_stroke_2 awaitstroke2
begin_batch_of_updates beginbatchupdate
close_retained_segment closeretainseg
close_temporary._segment closetempseg
create_retained_segment createretainseg
create_temporary_segment createtempseag
define_color_indices defcolorindices
delete_all_retained_segments delallretainsegs
delete_retained_segment delretainsegment
deselect_view_surface deselectvwsurf
end_batch_of_updates endbatchupdate
file_to_raster filetoraster
free_raster freeraster
get_mouse_state getmousestate
get_raster getraster
initialize_core initializecore
initialize_device initializedevice
initialize_view_surface initializevwsurf
inquire_charjust ingcharjust
inquire_charpath_2 ingcharpath2
inquire_charpath_3 ingcharpath3
inquire_charprecision ingcharprecision
inquire_charsize ingcharsize
inquire_charspace ingcharspace
inquire_charup_2 ingcharup2
inquire_charup_3 ingcharup3
inquire_color_indices ingcolorindices
inquire_current_position_2 inqcurrpos?2
inquire_current_position_3 ingcurrpos3
inquire_detectability ingdetectability
inquire_echo ingecho

Revision F of 15 May 1985

O

SunCore Reference Manual

Correspondence Between C Names and Pascal Names

SunCore Name Pascal Equsvalent
inquire_echo_position ingechoposition
inquire_echo_surface ingechosur face

inquire_fill_index

ingfillindex

inquire_font ingfont
inquire_highlighting inghighlighting
inquire_image_transformation_2 ingimgtransform2
inquire_image_transformation_3 ingimgtransform3
inquire_image_transformation_type ingimgxformtype
inquire_image_translate_2 ingimgtranslate2
inquire_image_translate_3 ingimgtranslate3
inquire_inverse_composite_matrix inginvcompmatrix
inquire_keyboard ingkeyboard
inquire_line_index inqglineindex
inquire._linestyle inqlinestyle
inquire_linewidth inglinewidth
inquire_locator_2 inqlocator2
inquire_marker_symbol ingrarkersymbol
inquire_ndc_space_2 inqndecspace2
inquire_ndc_space_3 ingndespace3
inquire_open_retained_segment ingopenretainseg
inquire_open_temporary_segment ingopentempseg
inquire_pen ingpen
inquire_pick_id ingpickid
inquire_polygon_edge_style ingpolyedgestyle
inquire_polygon_interior_style ingpolyintrstyle
inquire_primitive_attributes ingprimattribs
inquire_projection ingprojection
inquire_rasterop ingrasterop
inquire_retained_segment_names ingretainsegname
inquire_retained_segment_surfaces ingretainsegsurf
inquire_segment_detectability ingsegdetectable
inquire_segment_highlighting ingseghighlight
inquire_segment_image_transformation_2 ingsegimgxform2
inquire_segment_image_transformation_3 ingsegimgxform3
inquire_segment_image_transformation_type ingsegimgxfrmtyp
inquire_segment_image_translate_2 ingsegimgxlate2
inquire_segment_image_translate_3 ingsegimgxlate3
inquire_segment_visibility ingsegvisibility
inquire_stroke ingstroke

Revision F of 15 May 1985

Using SunCore with Pascal Programs

E-7

Using SunCore with Pascal Programs SunCore Reference Manual

Correspondence Between C Namea and Pascal Names

SunCore Name Pascal Equivalent
inquire_text_extent_2 ingtextextent2
inquire_text_extent_3 ingqtextextent3
inquire_text_index ingtextindex
inquire_valuator ingvaluator
inquire_view_depth ingviewdepth
inquire_view_plane_distance inqviewplanedist
inquire_view_plane_normal ingviewplanenorm
inquire_view_reference_point ingviewrefpoint
inquire_view_up_2 ingviewup2
inquire_view_up_3 ingviewup3
inquire_viewing_control_parameters ingvwgcntrilparms
inquire_viewing_parameters ingviewingparams
inquire_viewport_ 2 ingviewport2
inquire_viewport_3 ingviewport3
inquire_visibility ingvisibility
inquire_window ingwindow
inquire_world_coordinate_matrix_2 inqworldmatrix2
inquire_world_coordinate_matrix_3 ingworldmatrix3
line_abs_2 lineabs2
line_abs_3 lineabs3
line_rel_2 linerel2
line_rel_3 linerel3
map_ndc_to_world_2 mapndctoworld2
map_ndc_to_world_3 mapndctoworld3
map_world_to_ndc_2 mapwor ldtondc2
map_world_to_ndc_3 mapworldtondc3
marker_abs_2 markerabs2
marker_abs_3 markerabs3
marker_rel_2 markerrel2
marker_rel_3 markerrel3
move_abs_2 moveabs2
move_abs_3 moveabs3
move_rel_2 moverel2
move_rel_3 : moverel3
newv_frame nevframe
pelygon_abs_2 polygonabs2
polygon_abs_3 polygonabs3
polygon_rel_2 polygonrel2
polygon_rel_ 3 polygonrel3

E-8 Revision F of 15 May 1985

SunCore Reference Manual

Using SunCore with Pascal Programs

Correspondence Between C Names and Pascal Names
SunCore Name Pascal Equivalent

pPelyline_abs_2 polylineabs2
pelyline_abs_3 polylineabs3
pelyline_rel_2 polylinerel2
polyline_rel_3 pelylinerel3
polymarker_abs_2 pelymarkerabs2
polymarker_abs_3 polymarkerabs3
polymarker_rel_2 polymarkerrel2
polymarker_rel_3 polymarkerrel3
print_error printerror
put_raster putraster
raster_to_file rastertofile
rename_retained_segment renameretainseg
report_most_recent_error reportrecenterr
restore_segment restoresegment
save_segment Savesegment
select_view_surface selectvwsurf
set_back_plane_clipping setbackeclip
set_charjust setcharjust
set_charpath_2 setcharpath2
set_charpath_3 setcharpath3
set_charprecision setcharprecision
set_charsize setcharsize
set_charspace setcharspace
set_charup_2 setcharup2
set_charup_3 setcharup3
set_coordinate_system_type setcoordsystype
set_detectability setdetectability
set_drag setdrag
set_echo setecho
set_echo_group setechogroup
set_echo_position setechoposition
set_echo_surface setechosur face
set_fill_index setfillindex
set_font setfont
set_front_plane_clipping setfrontclip
set_highlighting sethighlighting
set_image_transformation_2 setimgtransform2
set_image_transformation_3 setimgtransform3
set_image_transformation_type setimgxformtype
set_image. translate_2 setimgtranslate2

Revision F of 15 May 1985 E-g

Using SunCore with Pascal Programs SunCore Reference Manual

Correspondence Belween C Names and Pascal Names

SunCore Name Pascal Equivalent
set_image_translate_3 setimgtranslate3
set_keyboard setkeyboard
set_light_direction setlightdirect
set_line_index setlineindex
set_linestyle setlinestyle
set_linewidth setlinewidth
set_locator_2 setlocator2
set_marker_symbol setmarkersymbol
set_ndc_space_2 setndcspace2
set_ndc_space_3 setndcspace3
set_output_clipping setoutputclip
set_pen setpen
set_pick setpick
set_pick_id setpickid
set_polygon._edge_style setpolyedgestyle
set_polygon._interior_style setpolyintrstyle
set_primitive_attributes setprimattribs
set_projection setprojection
set_rasterop setrasterop
set_segment_detectability setsegdetectable
set_segment_highlighting setseghighlight
set_segment_image_transformation_z setsegimgxform2
set_segment,image_transformation_S setsegimgxform3
set_segment_image_translate_2 setsegimgxlate2
set_segment_image_translate_3 setsegimgxlate3
set_segment_visibility setsegvisibility
set_shading parameters setshadingparams
set_stroke setstroke
set_text_index settextindex
set_valuator setvaluator
set_vertex_indices setvertexindices
set_vertex_normals setvertexnormals
set_view_depth setviewdepth
set_view_plane_distance setviewplanedist
set_view_plane_normal setviewplanenornm
set_view_reference_point setvievwrefpoint
set_view_up_2 setviewup?2
set_view_up_3 setviewup3
set_viewing_parameters setviewingparams
set_viewport_2 setviewporta

E-10 Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Pascal Programs

Correspondence Between C Names and Pascal Names

SunCore Name Pascal Equivalent
set_viewport_3 setviewport3
set_visibility setvisibility
set_window setwindow
set_window_clipping setwindowclip
set_world_cocordinate_matrix_2 setvorldmatrix2
set_world_coordinate_matrix_3 setworldmatrix3
set_zbuffer_cut setzbuffercut
size_raster sizeraster
terminate_core terminatecore
terminate_device terminatedevice
terminate_view_surface terminatevwsurf
text puttext

Revision F of 15 May 1985 E-11

Using SunCore with Pascal Programs

E.4. Declarations for SunCore-Pascal Interface

E.4.1. Type Declarations

type larr array[l..256] of integer;

type parr array[l..256] of real;

type cct = array[l..257] of char;
type ivarray = array[l..4,1..4] of real;
type ivarrayl = array[l..3,1..3] of real;

type pttype = record
X,Y.zZ,w:real;
end;

type aspect = record
width, height:real;
end;

type primattr = record
lineindx: integer;
fillindx: integer;
textindx: integer;
linestyl: integer;
poelyintstyl: integer;
polyedgstyl: Integer;
linwidth: real:
pen: integer;
font: integer;
charsize: aspect;
chrup, chrpath, chrspace: pttype;
chjust: integer;
chqualty: integer;
marker: integer;
pickid: integer;
rasterop: integer:

end;

E-12

SunCore Reference Manual

Revision F of 15 May 1985

SunCore Reference Manual

type rasttyp = record

type cmap = record

type windtype = record

type porttype = record

l

type vwprmtype = record

type vwsurf = record

end;

Using SunCore with Pascal Programs

width: integer;
height: integer:
depth: integer;
bits: integer; {var}
end;

typ: integer;
nbyt: integer;
dat :integer; {var}

end;

xmin, xmax, ymin, ymax:real;
end;

xmin,xmax,ymin, ymax,zmin, zmax:real;
end;

vwrefpt: array [1..3] of real;
vwplnorm: array [1..3] of real;
viewdis:real;

frontdis:real;
backdis:real;
projtype:integer;
projdir: array [1..3] of real;
window:windtype;
vwupdir: array [1..3] of real;
viewport:porttype:;

end;

screenname: array [l1..DEVNAMESIZE] of char;
windowname: array [1..DEVNAMESIZE] of char;
windowfd:integer;

dd: integer;

instance:integer;

cmapsize:integer;

cmapname: array [l1..DEVNAMESIZE] of char;
flags:integer:

ptr: integer;

type vwsurfst = array [l..DEVNAMESIZE] of char:

type vwarr = array[l..MAXVSURF] of vwsurf;

Revision F of 15 May 1985

E-13

Using SunCore with Pascal Programs

SunCore Reference Manual

E.4.2. Functlion Declarations

E-14

function

function

function

function

function

function

function

function
function
function
function
function

function

functidn

function

allocateraster (var rptr:rasttyp):integer; external;

awaltanybutton(tim:integer;
var buttonnum:integer) :integer; external;

awtbuttongetloc2 (time:integer; locatornum:integer;
var buttonnum:integer; var x:real;
var y:real):integer; external;

awtbuttongetval (time:integer; valnum:integer;
var buttonnum:integer; var val:real):
integer; external;

awaitkeyboard (tim: integer ;keynum:integer;var sptr:cct:
var length:integer) :integer; external;

awaitpick(time:integer; picknum:integer;
var segnam:integer; var pickid:integer)
:integer; external;

awaitstrokez(tim:integer;picknum:integer;asize:integer;var X:parr;
var y:parr;numxy:integer) :integer: external;

beginbatchupdate:integer; external;
closeretailnseqg:integer; external:
closetempseg:integer; external;

createretainseg (segname:integer) : integer; external;
createtempseg:integer; external;

defcolorindices(surfacename:vwsurf;
il:integer;i2:integer;
var r:parr;var g:parr;var b:parr
) :integer; external;

delallretainsegs:integer; external;

delretainsegment (segname:integer) : integer; external;

Revision F of 15 May 1985

-

SunCore Reference Manual Using SunCore with Pascal Programs

function deselectvwsurf (surfacename:vwsurf
) :integer; external;

function endbatchupdate:integer; external;

function filetoraster (rasfid:integer;var rptr:rasttyp;
var map:cmap) :integer; external;

function freeraster (var rptr:rasttyp) :integer; external;

function getmousestate (var devclass: int; var devnum: int; var x:real;
var y:real;var buttons:integer):
integer; external;

function getraster (surfacename :vwsurf;
xmin:real ;xmax:real;ymin:real;ymax:real;
xd:integer;yd:integer;var rptr:rasttyp):integer;
external;

function initializecore(outputlevel:integer;
inputlevel:integer;
dimension:integer) :integer; external;

Q::> function initializedevice(deviceclass:integer;
devicenum: integer) : integer; external;

function initializevwsurf (surfacename:vwsurf; typ:integer
) :integer; external;

function ingcharjust{var chjust:integer) :integer; external;

function ingcharpath(var x:real;var y:real):integer; external;

function ingcharpath3(var x:real;var y:real;var z:real):integer: external:
fugction ingcharprecision(var chquality:integer) :integer; external;
funcfion inqcharsize(var width:real;var height:real) :integer; external;

function inqgcharspace(var space:real) :integer; external;

i function inqcharup?(var x:real;var y:real):integer; external;

C- > function ingcharup3(var x:real;var y:real;var z:real):integer: external;

Revision F of 15 May 1985 E-15

Using SunCore with Pascal Programs SunCore Reference Manual

E-16

function

function

function

function

function

function

function

function

function

functicn

function

function

function

function

function

function

inqcolorindices (surfacename:vwsurf;
il:integer;i2:integer;
var r:parr;var g:parr;var b:parr
) :integer; external;

inqcurrpos2 (var x:real;var y:real):integer; external:
inqecurrpos3 (var x:real;var y:real;var z:real):integer; external;
ingdetectability (var detect:integer):integer; external;

ingecho (devclass:integer devnum:integer;
var echotype:integer) :integer; external;

ingechoposition{devclass:integer;devnum:integer;
var x:real;var y:real) :integer; external;

inqechosur face (devclass:integer devnum: integer;
var surfacename:vwsurf):integer; external:

ingfillindex (var color:integer):integer; external;
inqgfont (var font:integer):integer; external;
inghighlighting(var highlight:integer) :integer; external;

ingimgtransform2 (var sx:real; var sy:real;var a:real
;var tx:real; var ty:real
) :integer; external;

ingimgtransform3(var sx:real; var sy:real:var sz:real
;var ax:real; var ay:real;var az:real
;var tx:real; var ty:real;var tz:real
} :integer; external;

ingimgxformtype (var segtype:integer) :integer; external;
inqimgtranslate2{var tx:real; var ty:real):integer; external;

inqgimgtranslate3(var tx:real; var ty:real;var tz:ireal
) :integer; external;

inginvcompmatrix (var iarray:ivarray):integer; external;

Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Pascal Programs

function ingkeyboard(keynum:integer;var bufsize:integer;var string:cct;
var pos:integer) :integer; external;

function inqglineindex(var ceclor:integer) :integer; external;
function inglinestyle(var linestyle:integer) :integer; external;
function inglinewidth{var linewidth:real):integer; external;

function inglocator2(locnum:integer;
var XxX:real;var y:real):integer; external;

function ingmarkersymbol (var mark:integer):integer; external;
function inqndcspace2 (var width:real;var height:real) :integer; external;

function ingndcspace3{var width:real;var height:real;var
depth:real) :integer; external;

function inqopénretainseg(#ar segname: integer) :integer; external;
func;ion.inqopentempseg(var open: integer) :integer; external;
.function ingpen{var pen:integer) :integer; external:

function ingpickid{var pick:integer) :integer: external;:
function'inqpolyedgestyle(var pestyle:integer):integer; external;
function ingpolyintrstyle(var pistyle:integer):integer; external;
function ingprimattribs(var defprim:primattr) :integer; external;

function ingprojection(var ptype:integer; var dx:real; var dy:real;
var dz:real):integer; external;

function ingrasterop(var rastop:integer):integer; external;

function ingretainsegname (arraycnt:integer; var seglist:iarr;
var segcnt:integer):integer; external;

function inqretainsegsurf (segname:integer; arraycnt:integer; var surflist:vwarr;
var surfcnt:integer) :integer; external;

Revision F of 15 May 1985 E-17

Using SunCore with Pascal Programs

SunCore Reference Manual

Note: since vwarr is an array of MAXVSURF viewsurfaces, arraycent should be MAXVSURF.

E-18

function

function

function

function

ingsegdetectable (segname: integer;var dtable:integer)
tinteger; external:;

ingseghighlight (segname:integer var highlight:integer})
:integer; external;

ingsegimgxform2 (segname: integer;var sx:real;var sy:real;
var a:real;var tx:real;var ty:real
) :integer; external;

ingsegimgxform3 (segname:integer;var sx:realvar sy:real;
var sz:real;var rx:real;var ry:real;

-

var rz:real;var tx:real;var ty:real;var tz:real

} : integer; external;

fuﬁction
:unction
function
function
function
function
function

function

function

function

ingsegimgxfrmtyp (segname: integer;var segtype: integer)
:integer; external;

ingsegimgxlate2 (segname:integer;var tx:real;var ty:real)
:integer; external;

ingsegimgxlate3 (segname:integer ;var sx:real;var sy:real;
var sz:real):integer; external:

ingsegvisibility (segname:integer ;var visible:integer) :
integer; external;

inqétroke(strokenum:1nteger;var bufsize:integer;var
dist:real;var time:integer) :integer; external:

ingtextextent2 (var string:cct;var dx:real; var dy:real
) :integer; external;

ingtextextent3{var string:cct;var dx:real; var dy:real
; var dz:real):integer; external;

ingtextindex (var color:integer) :integer: external;

ingvaluator (valnum: integer;var init:real;var low:real;var high:real)
:integer; external;

ingviewdepth (var fdist:real;var bdist:real)
:integer; external:;

Revision F of 15 May 1985

-

©

SunCore Reference Manual Using SunCore with Pascal Programs

function

function

function

function

function

function

functicn

function

function

function

function

function
function
function
function
function

function

inqgviewplanedist (var vdist:real) :integer; external;

inqviewplanenorm(var dx:real; var dy:real;
var dz:real):intager; external:

ingviewrefpolnt {var rx:real; var ry:real;
var rz:real}):integer; external;

ingviewup2 (var dx:real; var dy:real
) :integer; external;

ingviewup3(var dx:real; var dy:real:;
. var dz:real):integer; external;

ingvwgentrlparms {var weclip:integer;var fclip:integer;
var bclip:integer;var typ:integer)
:integer; external;

ingviewingparams {(var viewparm:vwprmtype) :integer: external;

ingviewport2 (var xmin:real; var xmax:real;var ymin:real;var ymax:real
) :integer; external;

inqviewport3(var xmin:real; var xmax:real;var ymin:real;var ymax:real
;var zminireal;var zmax:real)
:integer; external;

ingvisibility(var visible:integer)
iinteger; external;

ingwindow{var umin:real; var umax:real;var vmin:real;var vmax:real
} :integer; external;

inqworldmatrix2 (var iarray:ivarrayl):integer; external:;
ingqworldmatrix3(var larray:ivarray):integer; external;
lineabs2 (x:real;y:real) :integer; external;

lineabs3 (x:real;y:real;z:real}):integer; external;
linerel2(x:real;y:real) :integer; external;

linerelld(x:real;y:real;z:real) :integer; external;

Revision F of 15 May 1985 E-19

Using SunCore with Pascal Programs SunCore Reference Manual

E-20

function

function

function

function

mapndctoworld2 (ndx:real; ndy:real; .
var wldx:real; var wldy:real
:integer; external;

mapndctowor1ld3(ndx:real; ndy:real; ndz:real;
var wldx:real: var wldy:real
; var wldz:real)
:integer; external;

mapwor ldtondc2 (wldx:real; wldy:real:
var ndx:real; var ndy:real)
tinteger; external;

mapworldtonde3 (wldx:real; wldy:real; wldz:real:;
var ndx:real; var ndy:real
; var ndz:real

) :integer; external;

functien

function

function

function

function

function

function

function

function

function

function

function

markerabs2 (mx:real;my:real) :integer; external;
markerabs3(mx:real; my:real;mz:real):lnteger; external;
markerrel2{dx:real;dy:real) :integer; external;
markerrel3(dx:real; dy:real;dz:real):integer; external;
moveabsZ {x:real;y:real) :integer; external;
moveabsS(x:real;y:real;z:real):integer: external;
moverel2(x:real;y:real}:integer; external;
moverel3(x:real;y:real:z:real):integer; external;
newframe:integer; external;

pasloc{function f:integer
) :integer; external;

polygonabs2 (var xcoor:parr; var ycoor:parr;
n:integer) :integer; external;

polygonabs3 (var Xcoor:parr; Var yCOOY Iparr;var zZcoor:parr;
n:integer) :integer; external;

Revision F of 15 May 1985

O

SunCore Reference Manual Using SunCore with Pascal Programs

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

polygonrel2 (var xcoor:parr; var ycoor:parr;
n:integer) :integer; external;

polygonrel3{var xcoor;:parr; Vvar ycoor:parr;var Zcoor:parr;
n:integer) :integer; external;

pelylineabs2 (var xcoor:parr; vVar ycoor:parr;
n:integer) :integer; external;

polylineabs3(var xcoor:parr; var ycoor:parr;var Zcoor:parr;
n:integer) :integer; external;

polylinerel2(var Xcoor:parr;var ycoor:parr;
n:integer} :integer; external;

polylinerel3(var xcoor:parr; var ycoor:parr;var Zcoor:parr;
n:integer) :integer; external:

polymarkerabs2 (var xcoor:parr; var ycoor:parr;
n:integer) :integer; external;

pelymarkerabs3 (var xcoor:parr; var ycoor :parr;var Zzcoor:iparr;
n:integer) :integer; external;

polymarkerrel2(var xcoor:parr; var ycoor:parr;
n:integer) :integer: external;

polymarkerrel3 (var Xcoor:parr; var yCoor:parr;var Zcoor:parr.
n:integer) :integer; external;

printerror (var string:cct;error:integer):integer; external;
putraster {var rptr:rasttyp) :integer: external;
puttext(var string:cct) :integer; external;

rastertofile (var rptr:rasttyp:var map:cmap;rasfid:integer
) :integer; external;

renameretainseg(segname: integer ;newname:integer) :integer; external;

reportrecenterr (var error:integer) :integer; external;

restoresegment (segname: integer ;var fname:cct):integer; external;

Reviston F of 15 May 1985 E-21

Using SunCore with Pascal Programs SunCore Reference Manual

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

function

E-22

savesegment (Segname:integer;var fname:cct):integer; external;

selectvwsurf (surfacename:vwsurf
) ;integer; external;

setbackeclip (onoff:integer) :integer; external;

setchar just (chjust:integer) :integer; external;
setcharpath2 (dx:real; dy:real):integer; external;
setcharpath3(dx:real; dy:real;dz:real):integer; external;
setcharprecision(chquality:integer) :integer; external;
setcharsize(chwid:real;chht:real) :integer; external;
setcharspace (space:real) :integer; external:
setcharup2(dx:real; dy:real):integer; external;
setcharup3{dx:real; dy:real;dz:real):integer; external;
setcoordsystype{typ:integer) :integer; external;
setdetectability (detect:integer) :integer: external;
setdrag(drag:integer) :integer; external:

setecho (devclass:integer;devnum: integer:
echotype:integer) : integer; external;

setechogroup (devclass: integer;var devarray:larr;n:linteger;
echotype:integer} :integer; external;

setechoposition{devclass:integer;devnum:integer;
x:real;y:real) :integer; external;

setechosurface {devclass: integer;devnum: integer;
sur facename:vwsurf) : integer: external;

setfillindex (color:integer) :integer; external;

Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Pascal Programs

function
function
function

function

function

function
function
function

function

function

function
function
function
function
function
function

function

function

function

setfont (font:integer) :integer; external;
setfrontclip (onoff:integer) :integer; external;
sethighlighting(highlight:integer) :integer; external;

setimgtransform2(sx:real; sy:real;a:real
;tx:real; ty:real):integer; external;

setimgtransform3(sx:real; sy:real;sz:real:
ax:real; ay:real;az:real;
tx:real; ty:real;tz:real)
:integer; external;

setimgx formtype (segtype:integer) :integer; external;
setimgtranslate2 (tx:real; ty:real):integer; external;
setimgtranslatel (tx:real; ty:real;tz:real):integer; external;

setkeyboard (keynum: integer ;bufsize:integer;var string:cct;
pos:integer) :integer; external;

setlightdirect (dx:real; dy:real;dz:real
) :integer; external;

setlineindex (color:integer) :integer; external;
setlinestyle(style:integer) :integer; external;

setlinewlidth (width:real) :integer; external;
setlocator2{locnum:integer;x:real;y:real) :integer; external:;
setmarkersymbol (mark:integer) :integer; external;
setndcspace2 (width:real ;height:real) :integer; external;

setndcspace3 (width:real height:real;depth:real)
:integer; external;

setoutputclip {onoff:integer) :integer; external;

setpen{pen: integer) : integer; external;

Revision F of 15 May 1985 E-23

Using SunCore with Pascal Programs SunCore Reference Manual

E-24

function
function
function
function
function

function

function

function

function

function

function

function

function

function

function

function

setpick (picknum: integer; aperture: real) :integer; external:
setpickid (pickid:integer) :integer; external;
setpolyedgestyle(pestyle:1nteger):integer: external;
setpolyintrstyle(pistyle:integer) :integer; external:
setprimattribs(var defprim:primattr) :integer; external;

setprojection (ptype:integer;dx:real: dy:real;dz:real)
:integer; external:;

setrasterop (rop:integer) :integer; external;

setsegdetectable{segname: integer; detectbl:integer)
:integer; external;

setseghighlight (segname:integer; highlight:integer)
:integer; external:;

setsegimgxform2 (segname: integer sx:real; sy:real;a:real:;
tx:real;ty:real) :integer; external;

setsegimgxform3 (segname:integer; sx:real; sy:real;
sz:real; rx:real; ry:real; rz:real
: tx:real; ty:real; tz:real

} ;integer; external;

setsegimgxlate2 {segname:integer;tx:real; ty:real
) :integer; external;

setsegimgxlated (segname:integer;tx:real; ty:real;tz:real
} :integer; external;

setsagvisibility(segnaﬁe:1nteger:visible:integer):integer: external;

setshadingparams(amb:real:dif:real;spec:real:flood:real;
bump :real;hue:integer;style:integer
} :integer: external;

setstroke (strokenum: integer ;bufsize:integer;
dist:real;time:integer)
:integer; external;

Revision F of 15 May 1985

SunCore Reference Manual Using SunCore with Pascal Programs

function settextindex(color:integer) :integer; external;

function setvaluator (valnum:integer;init:real;low:real;high:real)
:integer; external;

function setvertexindices(var x:iarr;n:integer) :integer; external;

function setvertexnormals (var xcoor:parr; var ycoor:parr;var Zcoor :parr:
n:integer) :integer; external;

function setviewdepth (near:real; far:real) :integer; external;

function setviewplanedist (dist:real):integer; external:;

functlion setviewplanenorm(dx:real; dy:real.dz:real) :integer; external;
function setviewrefpoint (x:real; y:real;z:real):integer; external;
funcfion setviewup2 (dx:real; dy:real):integer; external;

function setviewup3(dx:real; dy:real;dz:real):integer; external;
function setviewingparams{var viewparm:vwprmtype) :integer; external;

function setviewport2(xmin:real;xmax:real;ymin:real;ymax:real):
integer; external;

function setviewport3(xmin:real;xmax:real;ymin:real;ymax:real;zmin:real;zmax:real)
:integer; external;

function setvisibility(visibility:integer) :integer; external;

function setwindow(umin:real;umax:real;vmin:real;vmax:real)
tinteger; external;

function setwindowclip(cnoff:integer):integer; external;
function setworldmatrix2(var iarray:ivarrayl):integer; external.;
function setworldmatrix3(var iarray:ivarray):integer; external;

function setzbuffercut (var surfacename:vwsurf;var x:parr;
var z:parr;n:integer):integer; external;

Revision F of 15 May 1985 E-25

Using SunCore with Pascal Programs SunCore Reference Manual

E-28

function

function

function

function

xmin:real ;xmax:real;ymin:real;ymax:real;
var rptr:rasttyp):integer; external;

sizeraster {var surfacename:vwsurf; (:i)

terminatecore:integer; external;
terminatedevice (devclass:integer ;devnum: integer) :integer; external;

terminatevwsurf (var surfacename:vwsurf) :integer; external;

Revision F of 15 May 1985

Appendix F

Higher Performance SunCore Library

SunCore programs which are to be run on machines with Sun’s hardware floating point option
may use an alternative SunCore library which provides higher floating point performance. This
library is in fuar/lib/libcoresky.a. A program linked with this library will enly run on a machine
with hardware floating point.

To use this library for C programs, use a C compiler command line like:

tutorialy ¢¢ —feky —o grab grab.c -~lcoresky —lsunwindow —lpixrect —lm

and to use this library for Fortran programs:

tutorial¥ £77 —fsky -o grab grab.f —lcore77 —lcoresky —lsunwindow —lpixrect —Im

Note that this library ¢cannot be used with Pascal programs in the current release.

If compiling and linking are done in separate steps, the —£8ky option must also be specified in
the linking stage. The —f£sky option may also be used in the compiling step. See the cc(1) and
J77(1) manual pages for details.

Revision F of 15 May 1985 F-1

Appendix G

SunCore Error Numbers

SunCore does not use the error numbers suggested by the ACM CORE standard. The following
table matches an error number with the error message:

Error Description
Number
0 The CORE SYSTEM has already been initialized.
1 The specified level cannot be supported.
2 The surface has already been initialized.
3 No physical surface is associated with the specified logical surface.
4 The CORE SYSTEM has not been initialized.
5 The specified surface has not been initialized.
6 The specified surface is already selected.
7 The specified surface was not selected.
8 A segment is open.
9 The specified surface is not selected.
10 The specified surface has not been deselected.
11 This function has already been called once.
12 A segment has been opened.
13 A value specified for a default attribute is improper.
14 The specified segment does not exist.
15 The VIEW SURFACE ARRAY is not large enough.
16 Segment list overflow, can’t create segment.
17 There has been no ‘end batch’ since last ‘begin batch’.
18 There has been no corresponding ‘begin batch’.
19 A viewing function has been invoked, or a segment has been created.
20 The value for TYPE is improper.
21 No segment is open.
22 nis <=0.
23 String contains an illegal character.
24 The vectors established by CHARSPACE and CHARUP are parallel.
25 Invalid marker table offset.
26 Invocation when no open segment.
27 Invalid attribute value.
28 Invalid segment type.

Revision F of 15 May 1985 G-1

SunCore Error Numbers SunCore Reference Manual

Error

Number Description
29 Invalid segment number.
30 Invalid image transformation for the segment.

31 A retained segment named SEGNAME already exists.
32 The segment type is inconsistent with the current IMAGE_TRANSFORM.

33 No view surface is currently selected.
34 The current viewing specification is inconsistent.
35 No view surfaces have been initialized.
36 There is an existing retained segment named NEW_NAME.
37 There is no retained segment named SEGMENT_NAME.
38 No characters in string (n=0).
39 Dx, dy, and dz, are all zero: no direction can be established.
40 MIN is not less than MAX, for u or v bounds.
41 FRONT_DISTANCE exceeds BACK_DISTANCE; back clip
plane is in front.
42 ‘ndesp?2’ or ‘ndcsp3’ has been invoked since SunCore was last initialized.
43 The invocation of ‘ndespx’ is too late, default values have been assumed.
44 A parameter value is greater than 1, or is less than or equal to 0.
45 Neither parameter has a value of 1.
46 Viewport extent is outside of normalized device coordinate space.
47 MIN is not less than MAX, for x, y, or z bounds.

48 Specified device already enabled.
49 = DEVICE_CLASS or DEVICE_NUM invalid.

50 DEVICE_CLASS invalid.

51 Specified device is not enabled.

52 LOCATOR._NUM is invalid.

53 The specified LOCATOR device is not enabled.
54 VALUATOR_NUM is invalid.

55 The specified VALUATOR device is not enabled.

56 The TIME value is less than zero.

b7 EVENT_CLASS and EVENT_NUM do not specify a valid event device.
58 EVENT_CLASS is not a legal event device class.

59 The specified association already exists.

EVENT_CLASS or SAMPLED_CLASS reference invalid or

80
wrong type of class.
61 EVENT_NUM or SAMPLED_NUM are invalid device numbers
for their classes.
62 The specified association does not exists.
63 The current event report is not from a PICK device.
64 The current event report is not from a KEYBOARD event.
65 Input string was not large enough to hold the string centered by user.
When event occurred, the LOCATOR device was not enabled or was
68 . . .
not associated with the event device.
87 When event occurred, the VALUATOR device was not enabled or was

not associated with the event device.

G-2 Revision F of 15 May 1985

SunCore Reference Manual

SunCore Error Numbers

NE::;::' Description
68 XECHO and YECHO specify positions outside NDC space,
69 PICK_NUM does not specify a valid PICK device.
70 LOCATOR_NUM does not specify a valid LOCATOR device,
71 XLOC, YLOC specify a position outside normalized device
coordinate space,.
72 VALUATOR_NUM is not a valid VALUATOR device.
73 LOW_VALUE is greater than HIGH_VALUE,
74 INITIAL_VALUE lies outside the range defined by
LOW_VALUE and HIGH_VALUE.
75 KEYBOARD_NUM is not a valid KEYBOARD device.
76 BUFFER_SIZE is <= zero or > the defined maximum.
77 BUTTON_NUM is not a valid BUTTON device.
78 Incorrect arguments for the specified function.
79 Incorrect argument count for the specified function.
- 80 Specified function not supported.
81 More than MAXPOLY vertices in polygon.
82 Invalid Viewing Specification. Viewing Matrix Unchanged!
83 Invalid view surface name.
84 Selected view surface cannot support hidden surfaces.
85 No other view surface can be initialized at this time,.
86 Raster depth is 1 or 8 bit pixels only.
87 Unable to allocate space for virtual memory display list.
88 Memory allocation failure.
89 Error in view reference point.
90 Error in view plane normal.
9 Error in view plane distance.
92 Error in view depth.
93 Error in projection.
94 Error in window.
95 Error in view up direction.
96 Error in viewport.
97 Set_ndc_space_2 or set_ndc_space_3 has already been invoked.
98 The default NDC space has already been established.
99 A parameter is not in the range of 0 to 1.
100 Neither width nor height has a value of 1.
101 Width or height is 0.
102 STROKE_NUM is not a valid STROKE device.
103 Input device is already initialized.
104 Input device is not initialized.
105 DEVICE_CLASS is not a valid device class.
106 Invalid echo type for PICK device.
107 Invalid echo type for KEYBOARD device.
108 Invalid echo type for STROKE device.
109 Invalid echo type for LOCATOR device.

Revision F of 15 May 1985

G-3

SunCore Error Numbers

SunCore Reference Manual

Error

Number Deacription

110 Invalid echo type for VALUATOR device.

111 Invalid echo type for BUTTON device.

112 Echo position specified is outside NDC space.
113 No BUTTON device is initialized.

G-4

Revision F of 15 May 1985

O

A
allocate_raster, 517
attributes, 6-1
dynamie, 4-1, 4-2, 6-1
image_transformation_type, 6-17
primitive, 6-1
segment, 6-1
static, 4-1, 6-1
attributes, retained segment dynamic, 42
Detectability, 4-2
Highlighting, 4-2
Image_transformation, 4-2
Visibility, 4-2
attributes, retained segment static, 4-1 thry 4-2
awailt_any_button, 7-8
awalt_any button_get_locator_2, 7-10
await_any button_get_wvaluator, 7-11
await_keyboard, 7-9
awalt_pick, 7-9
await_stroke_2, 7-10

B

batching updates, 2-4 thrx 2-5
begin_batch_of_updates, 2-4
black texture, 6-6
button input device, 7-1

echoing, 7-4
bwidd view surface, B-2
bw2dd view surface, B-2

C

cgldd view surface, B-2
cgpixwindd view surface, B-3
character quality constants, 1-9
clipping, 3-1
close_retained_segment, 4-3
close_temporary_segment, 4-6
constants, 1-9 thru 1-11

character quality, 1-9

image transformation type, 1-10

initialization, 1-9

input deviece, 1-10

line-style, 1-10

poljgon rendering style, 1-11

RasterOp, 1-11

text font selection, 1-10

transform, 1-9

Index

control, 2-1

drag, 2-6

error handling, 2-1
frame, 2-1
initialization, 2-1
picture change, 2-1
termination, 2-1
view surface, 2-1

coordinate systems, 1-6

normalized device, 1-6
world, 1-6

create_retalned_segment, 4-3
create_temporary.segment, 4-6
cross hatched texture, 6-6

Current Position

Moving, 5-4
D

define_color_indices, 6-6

delete_all_retained_segments, 4-4

delete_retained_segment, 4-3
deselect_view_surface, 2-4
drag control, 2-6

Dynamic¢ Attributes, 6-18

Detectability, 6-18
Highlighting, 6-18
Image_transformation, 6-19
Visibility, 6-18

E

echoing, 7-3 thru 7-7

button device, 7-4
keyboard device, 7-3
locator device, 7-5
pick device, 7-3
stroke device, 7-4
valuator device, 7-5

end_batch_of_updates, 2-5
error control, 2-5 thru 2-6

error handling, 2-1

error reporting, 1-8
event-generating devices, 7-1

F

file_to_raster, 519
FORTRAN interface

—-xxi —

function definitions, D-9 thry D-24

FORTRAN interface, continued
function name mapping, D-4 tAre D-0
Programming Hints, D-1 thre D-3
using FORTRAN, D-1

frame control, 2-1, 2-5

free_raster, 518

functional capabilities
classification, 1-7
dimension levels, 1-8
input, 1-8
output, 1-7

G

get_mouse_state, 7-11
get_raster, 5-16
grey tone texture, 6-6

H
hatched left texture, 6-6
hatched right texture, 6-6

I

image transformation type constants, 1-10
image_transformation_type attribute
None, 4-1
Transformable 2-D, 4-2
Transformable 3-D, 4-2
Translatable 2-D, 4-2
Translatable 3-D, 4-2
initialization and termination, 2-1 thru 2-2
initialization constants, 1-9
initialize_core, 2-2
initialize_device, 7-2
initialize_view_surface, 2-3
initializing
input devices, 7-2
input device constants, 1-10
input devices, 7-1
button, 7-1
echoing, 7-3 thru 7-7
event generating, 7-1
initializing, 7-2
keyboard, 7-1
locator, 7-1
pick, 7-1
reaﬁing, 7-8 thru 7-11
sampled, 7-1
stroke, 7-1
terminating, 7-2
valuator, 7-1
input primitives, 7-1
inquire_
char just, 6-16
charpath_2, 6-16
charpath_3, 6-16
charpreclision, 6-16
charsize, 6-15

inquire_, continued

charspace, 6-15

charup_2, 6-15

charup_3, 6-156

color_indices, 6-13

current_position_2, 5-5

current_position_3, 5-5

detectability, 6-25

echo, 7-12

echo_position, 7-12

echo_surface, 7-12

£ill_index, 6-13

font, 6-15

highlighting, 6-24

image_transformation_2, 6-25

image_transformation_3, 6-25

image_transformation_type, 6-18

image_translate_2, 6-25

image_translate_3, 6-25

keyboard, 7-13

line_index, 6-13

linestyle, 5-14

linewidth, 6-14

locator_2, 7-12

marker_symbol, §-17

open_retained_segment, 4-5

open_temporary. segment, 4-6

plck_id, 6-16

polygon_edge_style, 6-14

polygon_interior_style, 6-14

primitive_attributes, §-17

rasterop, §-16

retained_segment_names, 4-5

retained_segment_surfaces, 4-4

segment_detectability, 6-26

segment_highlighting, 6-26

segment_limage_transformation_2, 6
27

segment_image_transformation_3, 6§
2t

segment_Jimage_transformatiocn_type,
6-18

segment_image_translate_2, 6-26

segment_image_translate_3, 6-27

segment_visibility, 6-26

stroke, 7-13

text_extent_2, 59

text_extent_3, 59

text_index, 6-14

valuator, 7-13

visibility, 6-24

K

keyboard input device, 7-1

— xxii -

echoing, 7-3

L

Line Routines, 5-5 thru 5-6
line-style constants, 1-10
line_abs_2, 5-5
line_abs_3, 5-6
line_rel_2, 56
line_rel_3, 55
lint library, 1-6
locator input device, 7-1

echoing, 7-5

M
Marker Functions, 59 thrs 5-12
marker_abs_2, 5-10
marker_abs_3, 5-10
marker_rel_2, 510
marker_rel_3, 5-10
move_abs_2, 5-4
move_abs_3, 5-4
move_rel_2, 5-4
move_rel_3, 5-5
moving functions, 5-4 thru 5-5

N

naming, 4-1
new_frame, 2-5
normalized device coordinates, 1-6

o

output Primitives, 5-1
output primitives
line, 51
marker, 5-1
move, 5-1
polygon, 5-1
polyline, 5-1
polymarker, 5-1
rasters, 5-1
text, 5-1

P
Pascal interface
declarations, E-12 thry E-26
function declarations, E-14 thru E-26
function name mapping, E-6 thre E-11
programming requirements, E-1 thru E-3
type declarations, E-12 thru E-14
using Pascal, E-1
pick input device, 7-1
echoing, 7-3
picture change control, 2-1
pixwindd view surface, B-3
polygon functions, 514 thru 5-15
polygon rendering style constants, 1-11
polygon shading parameters, 5-12 thes 5-14
polygon_abs_2, 5-15

pelygon_abs_3, 515
polygon_rel_2, 515
polygon_rel_3, 5-15
Polyline Routines, 5-6 thru 5-8
polyline_abs_2, 57
peolyline_abs_3, 5-7
polyline_rel_2, 5-7
polyline_rel_3, 58
pelymarker_abs_2, 5-11
polymarker_abs_3, 511
polymarker_rel_2, 511
polymarker_rel_3, 511
primitive attributes, 6-1
primitive static attributes

charjust, 6-3

charpath, 6-3

charprecision, 6-3

charsize, 6-2

charspace, 6-3

“charup, 5-2

fill index, 6-1

font, 6-2

line index, 6-1

linestyle, 6-1

linewidth, 6-2

marker_symbol, 6-3

pen, 6-2

pick_id, 6-3

polygon edge style, 6-2

polygon interior style, 6-2

rasterop, 6-3

text index, 6-1
put_raster, 5-16

R
Raster Functions, 5-16 thru 5-19
raster_to_file, 5-18
RasterOp constants, 1-11
reading
input devices, 7-8 thru 7-11
rename_retained_segment, 4-4
report_most_recent_error, 2-5
restore_segment, 4-7
retained segment, 4-1
retained segment attributes, 4-1 thre 4-2
retained segment dynamic attributes, 4-1, 4-2, 6-
18
retained segment operations, 4-2 thry 4-5
retained segment static attributes, 4-1 thru 4-2,
6-17

S

sampled input devices, 7-1
save_segment, 4-5
segment attributes, 6-1
segmentation, 4-1

— xxiii —

segments, 4-1
retained, 4-1
temporary, 4-1
select_view_sur face, 2-3
set_
char just, 6-11
charpath_2, 6-10
charpath_3, 6-11
charprecision, 6-11
charsize, 6-9
charspace, 6-10
charup_2, 6-10
charup_3, §-10
detectability, 6-20
drag, 2-6
echo, 7-6
echo_group, 7-6
echo_position, 7-6
echo_surface, 7-6
£111_index, 6-7
font, 6-9
highlighting, 6-19
image_transformation_2, 6-20
image_transformation_3, 6-21
image_transformation_type, 6-18
image_translate_2, 6-20
image_translate_3, 6-20
keyboard, 7-7
light_direction, 513
line_index, 6-7
linestyle, 6-8
linewidth, 6-8
lecator_2, 7-7
marker_symbol, 6-11
pick, 7-8
pick_id, 6-12
polygon_edge_style, 6-9
polygon_interior_style, 6-8
primitive_attributes, 6-12
rasterop, 6-12
segment_detectability, 6-22
segment_highlighting, 6-21

segment_image_transformation_2, 6

22

segment_image transformation_3, 6-

23
segment_image_translate_2, 6-22
segment_image_translate_3, 6-23
segment_visibility, 6-21
shading_parameters, 5-12
stroke, 7-8
text_index, 6-8
valuator, 7-7
vertex_indices, 513
vertex_normals, 5-13
visibility, 6-19
zbuffer_cut, 514

shading
CONSTANT, 512

shading, continued
GOURAUD, 512
PHONG, 5-12
shading parameters, 5-12
size_raster, 517
static attributes, 6-1
stroke input device, 7-1
echoing, 7-4
SunCore
using, 1-7

T

temporary segment, 4-1
temporary segment operations, 4-5 thru 4-6
terminate_core, 2-2
terminate_device, 7-2
terminate_vlew_surface, 2-3
terminating

input devices, 7-2
terminology, 1-1 thru 1-4
text, 5-8
text font selection constants, 1-10
Text Routines, 5-8 thru 5-9
texture, 6-4

black, 6-6

cross hatched, 6-6

grey tone, 6-6

hatched left, 6-6

hatched right, 6-6

wallpaper, 6-6

wavy lines, 6-6

white, 6-6
three-dimensional polygon, 5-12 thru 5-14
transform constants, 1-9

U

ugercore.h, 1-9

A%

valuator input device, 7-1
echoing, 7-5
view surface, 2-2
initializing, 2-2 thru 2-4
selecting, 2-2 thru 2-4
view surface control, 2-1
view surface types
bwldd, B-2
bw2dd, B-2
cgldd, B-2
cgpixwindd, B-3
pixwindd, B-3
view surfaces, B-1 thru B-13
view volumes, 3-1
vwsur £ structure, B-1

W

wallpaper texture, 6-6
wavy lines texture, 6-6
white texture, 6-6
windows, 3-1

world coordinates, 1-6

READER COMMENT SHEET

Dear C;ustomer,

We who work here at Sun Microsystems wish to provide the best possible documentation for our
products. ‘To this end, we solicit your comments on this manual. We would appreciate your tel-
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn’t.

Typographical Errors:
Please list typographical Errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Did this guide meet your needs? If not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con-
venient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange
things? Do you find the style of this manual pleasing or irritating? What would you like
to see different?

